首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batten disease (BD) is the most common form of a group of disorders called neuronal ceroid lipofuscinosis, which are caused by a CLN3 gene mutation. A variety of pathogenic lysosomal storage disorder mechanisms have been suggested such as oxidative stress, endoplasmic reticulum (ER) stress, and altered protein trafficking. Resveratrol, a stilbenoid found in red grape skin, is a potent antioxidant chemical. Recent studies have suggested that resveratrol may have a curative effect in many neurodegenerative diseases. Therefore, we investigated the activities of resveratrol at the levels of oxidative and ER stress and apoptosis factors using normal and BD lymphoblast cells. We report that the BD lymphoblast cells contained low-levels of superoxide dismutase-1 (SOD-1) due to the long-term stress of reactive oxygen species. However, when we treated the cells with resveratrol, SOD-1 increased to levels observed in normal cells. Furthermore, we investigated the expression of glucose-regulated protein 78 as an ER stress marker. BD cells underwent ER stress, but resveratrol treatment resolved the ER stress in a dose-dependent manner. We further demonstrated that the levels of apoptosis markers such as apoptosis induce factor, cytochrome c, and cleavage of poly (ADP)-ribose polymerase decreased following resveratrol treatment. Thus, we propose that resveratrol may have beneficial effects in patients with BD.  相似文献   

2.
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.  相似文献   

3.
Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.  相似文献   

4.
Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis) is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney) cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm), achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm), human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.  相似文献   

5.
Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6 nclf/nclf cerebellar cells and compared them to wild-type and CbCln3 Δex7/8/Δex7/8 cerebellar cells. CbCln6 nclf/nclf cells and CbCln3 Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6 nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6 nclf/nclf and CbCln3 Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3 Δex7/8 and Cln6 nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.  相似文献   

6.
Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N‐acetylcysteine (NAC), a well‐known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.

Introduction

Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn''s disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.

Methods

We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.

Results

TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.

Conclusions

Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.  相似文献   

8.
The crude root-peel extract of Flemingia vestita, containing genistein as the major isoflavone, has a vermifugal/vermicidal effect. It acts by causing flaccid paralysis accompanied by alterations in the activities of several tegumental enzymes and other metabolic activities in the fowl tapeworm, Raillietina echinobothrida. To elucidate the mode of action of the putative phytochemicals on energy metabolism, crude root-peel extract, pure genistein and praziquantel were tested on glucose 6-phosphate dehydrogenase (G6PDH) and enzymes of gluconeogenesis--pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and fructose 1,6-bisphosphatase (FBPase)--in R. echinobothrida. The activities of G6PDH, PEPCK and FBPase were largely restricted to the cytosolic fraction, while PC was confined to the mitochondrial fraction. Following treatments, the G6PDH activity was decreased by 23-31%, whereas the activities of PC and PEPCK were increased by 32-44% and 44-49%, respectively. There was no significant effect by any of the treatments on FBPase activity. We hypothesize that the phytochemicals from F. vestita, genistein in particular, influence the key enzymes of these pathways, which is perhaps a function of high energy demand of the parasite under anthelmintic stress.  相似文献   

9.
10.
Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon γ, interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination.  相似文献   

11.
12.
Oxidative stress is closely associated with diabetes and is a major cause of insulin resistance. Impairment of hepatic insulin action is thought to be responsible for perturbations in hepatic glucose metabolism. In this study, we found that oxidative stress is involved in the dysregulation of gene expression of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, by a mechanism independent of insulin. Elevation of oxidative stress by injection of ferric nitrilotriacetate in rats increased the expression of hepatic PEPCK mRNA. To examine the direct action of oxidative stress on PEPCK expression, we treated H4IIE hepatoma cells with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO increased intracellular oxidative stress and the expression of PEPCK mRNA. Inhibition of p38 mitogen-activated protein kinase (p38 MAP kinase), which mediates responses to oxidative stress, suppressed the induction of PEPCK mRNA by BSO. These results suggest that oxidative stress dysregulates hepatic PEPCK expression by an insulin-independent mechanism.  相似文献   

13.
To investigate whether the mitochondrial apoptotic pathway mediates myocardial cell injuries in rats under brain death (BD), and observe the effects and mechanisms of the c‐Jun N‐terminal kinase (JNK) inhibitor SP600125 on cell death in the heart. Forty healthy male Sprague‐Dawley (SD) rats were randomized into four groups: sham group (dural external catheter with no BD); BD group (maintain the induced BD state for 6 hrs); BD + SP600125 group (intraperitoneal injection of SP600125 10 mg/kg 1 hr before inducing BD, and maintain BD for 6 hrs); and BD + Dimethyl Sulphoxide (DMSO) group (intraperitoneal injection of DMSO 1 hr before inducing BD, and maintain BD for 6 hrs). Real‐time quantitative PCR was used to evaluate mRNA levels of Cyt‐c and caspase‐3. Western blot analysis was performed to examine the levels of mitochondrial apoptosis‐related proteins p‐JNK, Bcl‐2, Bax, Cyt‐c and Caspase‐3. TUNEL assay was employed to evaluate myocardial apoptosis. Compared with the sham group, the BD group exhibited increased mitochondrial apoptosis‐related gene expression, accompanied by the elevation of p‐JNK expression and myocardial apoptosis. As the vehicle control, DMSO had no treatment effects. The BD + SP600125 group had decreased p‐JNK expression, and reduced mitochondrial apoptosis‐related gene expression. Furthermore, the apoptosis rate of myocardial cells was reduced. The JNK inhibitor SP600125 could protect myocardial cells under BD through the inhibition of mitochondrial apoptosis‐related pathways.  相似文献   

14.
《Cellular signalling》2014,26(9):1837-1845
Loss of skeletal muscle oxidative fiber types and mitochondrial capacity is a hallmark of chronic obstructive pulmonary disease and chronic heart failure. Based on in vivo human and animal studies, tissue hypoxia has been hypothesized as determinant, but the direct effect of hypoxia on muscle oxidative phenotype remains to be established. Hence, we determined the effect of hypoxia on in vitro cultured muscle cells, including gene and protein expression levels of mitochondrial components, myosin isoforms (reflecting slow-oxidative versus fast-glycolytic fibers), and the involvement of the regulatory PPAR/PGC-1α pathway. We found that hypoxia inhibits the PPAR/PGC-1α pathway and the expression of mitochondrial components through HIF-1α. However, in contrast to our hypothesis, hypoxia stimulated the expression of slow-oxidative type I myosin via HIF-1α. Collectively, this study shows that hypoxia differentially regulates contractile and metabolic components of muscle oxidative phenotype in a HIF-1α-dependent manner.  相似文献   

15.
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.  相似文献   

16.
Mitochondrial NADPH generation is largely dependent on the inner-membrane nicotinamide nucleotide transhydrogenase (NNT), which catalyzes the reduction of NADP(+) to NADPH utilizing the proton gradient as the driving force and NADH as the electron donor. Small interfering RNA (siRNA) silencing of NNT in PC12 cells results in decreased cellular NADPH levels, altered redox status of the cell in terms of decreased GSH/GSSG ratios and increased H(2)O(2) levels, thus leading to an increased redox potential (a more oxidized redox state). NNT knockdown results in a decrease of oxidative phosphorylation while anaerobic glycolysis levels remain unchanged. Decreased oxidative phosphorylation was associated with a) inhibition of mitochondrial pyruvate dehydrogenase (PDH) and succinyl-CoA:3-oxoacid CoA transferase (SCOT) activity; b) reduction of NADH availability, c) decline of mitochondrial membrane potential, and d) decrease of ATP levels. Moreover, the alteration of redox status actually precedes the impairment of mitochondrial bioenergetics. A possible mechanism could be that the activation of the redox-sensitive c-Jun N-terminal kinase (JNK) and its translocation to the mitochondrion leads to the inhibition of PDH (upon phosphorylation) and induction of intrinsic apoptosis, resulting in decreased cell viability. This study supports the notion that oxidized cellular redox state and decline in cellular bioenergetics - as a consequence of NNT knockdown - cannot be viewed as independent events, but rather as an interdependent relationship coordinated by the mitochondrial energy-redox axis. Disruption of electron flux from fuel substrates to redox components due to NNT suppression induces not only mitochondrial dysfunction but also cellular disorders through redox-sensitive signaling.  相似文献   

17.
Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of the matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.  相似文献   

18.
《Phytomedicine》2015,22(2):238-244
A 8.7 kDa lectin with high agglutin activity was isolated by affinity chromatography and cloned from Allium chinense in this study. For the MTT assay, approximately 60 µg/ml A. chinense lectin (ACL) inhibited 50% of the human hepatoma Hep-3B cells grown after 48 h. In addition, no antiproliferative effect was observed on normal human umbilical vein endothelial cells (HUVEC) even at 100 µg/ml concentration. After treatments with ACL on Hep-3B cells, morphologic changes in the nucleus and cytoskeleton were observed under laser scanning confocal microscopy with 4′,6-diamidino-2-phenylindole and tubulin Alexa Fluor 488 staining; whereas, the mitochondrial membrane potential was observed through Mito Tracker Red CMXRos staining. The results showed that ACL led to cell morphology and structure change (e.g., round cell shrinkage). Moreover, ACL resulted in significant change in the shape of the nucleus, damaged the cytoskeleton when tubulin was degraded, and reduced the mitochondrial transmembrane potential. By contrast, no changes were observed on HUVEC cells under the same treatment conditions. DNA fragmentation analysis was used to detect DNA damage. Western blot showed that ACL upregulated caspase-3 and Bax expression during apoptosis and cloned the structural gene of ACL with an open reading frame of 456 bp encoding 151 amino acid residues. The results showed that ACL is a potential anticancer drug.  相似文献   

19.
20.
Severe hypoxic microenvironment endangers cell survival of anterior cruciate ligament (ACL) fibroblasts and is harmful to ACL repair and regeneration. In the current study, we explored the effects of mechanogrowth factor (MGF) E peptide on the hypoxia-induced apoptosis of ACL fibroblasts and relevant mechanisms. It demonstrated that severe hypoxia promoted hypoxia-inducible factor-1α (HIF-1α) expression and caused cell apoptosis of ACL fibroblasts through increasing caspase 3/7/9 messenger RNA (mRNA), cleaved caspase 3 and proapoptotic proteins expression levels but decreasing antiapoptotic proteins expression levels. Fortunately, MGF E peptide effectively protected ACL fibroblasts against hypoxia-induced apoptosis through regulating caspase 3/7/9 mRNA, cleaved caspase 3 and apoptosis-relevant proteins expression levels. Simultaneously, mitochondrial, @@@MEK-ERK1/2 (extracellular-signal-regulated kinase 1/2), and phosphoinositide-3-kinase-protein kinase B (PI3K-Akt) pathways were involved in MGF E peptide regulating hypoxia-induced apoptosis of ACL fibroblasts. In rabbit ACL rupture model, MGF E peptide also decreased HIF-1α expression levels, cell apoptosis, and facilitated cell proliferation. In addition, MGF could accelerate angiogenesis after ACL injury probably owing to its recruitment of proangiogenesis cells by stromal cell-derived factor 1α/CXCR4 axis and stimulation of vascular endothelial growth factor α expression level. In conclusion, our findings suggested that MGF E peptide could be utilized for ACL repair and regeneration and supplied experimental support for its application in clinical ACL treatment as a potential strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号