首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   

2.
A protein spot corresponding to l-glycerol-3-phosphate dehydrogenase (α-GPDH, E.C. 1.1.1.8, NAD+ oxidoreductase) has been identified on a two-dimensional gel (isoelectric focusing-SDS gel) containing up to 150 stained protein spots from a crude Drosophila homogenate. Preliminary identification of the α-GPDH spot was made by including a suitable amount of purified Drosophila α-GPDH in crude fly homogenates prior to electrophoresis and observing an intensity enhancement of the corresponding protein spot on the gels. When three purified electrophoretic variants (slow, fast, and ultrafast) were mixed and analyzed by two-dimensional gel electrophoresis, horizontal displacements of the three protein spots were observed. Immunoprecipitation of the enzyme prior to electrophoresis and gene mapping further confirmed the identity of the α-GPDH protein spot. The α-GPDH spot can also be detected by autoradiography of a two-dimensional gel from a single fly extract, where it has been estimated to constitute 0.5–1% of the total soluble protein. Mutants which express no apparent α-GPDH activity were analyzed by two-dimensional gels and immunoelectrophoresis in an attempt to identify and characterize the inactive proteins. It is suggested that these techniques provide a powerful tool for the analysis of CRM+-null activity mutants of a specific gene-enzyme system.  相似文献   

3.
Contrary to previous reports brain mitochondria have a substantial capacity for net Ca2+ uptake (approx. 1.2 μeq. Ca2+ per mg protein) providing succinate is the oxidizable substrate. ATP stimulates calcium uptake (to 1.8 μeq. per mg protein), but is not required. The accumulation of Ca2+ with NAD-linked substrates is, however, significantly less. With 2-oxoglutarate, very limited Ca2+ uptake occurs before respiration is inhibited. At low concentrations (10 μM), Ca2+ stimulates the 2-oxoglutarate dehydrogenase activity of detergent solubilized mitochondria. Millimolar [Ca2+] is required for inhibition. Therefore, Ca2+ inhibition of 2-oxoglutarate oxidation can explain the low maximum uptake with this substrate, but probably not by directly effecting the dehydrogenase. Hence, the oxidation of 2-oxoglutarate can be either enhanced or suppressed depending upon the net Ca2+ accumulated by brain mitochondria.  相似文献   

4.
The quinone‐dependent alcohol dehydrogenase (PQQ‐ADH, E.C. 1.1.5.2) from the Gram‐negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three‐dimensional (3D) structures of the native form, with PQQ and a Ca2+ ion, and of the enzyme in complex with a Zn2+ ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ‐ADH displays an eight‐bladed β‐propeller fold, characteristic of Type I quinone‐dependent methanol dehydrogenases. However, three of the four ligands of the Ca2+ ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ‐ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ‐dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.  相似文献   

5.
Mitochondriall-glycerol-3-phosphate dehydrogenase (E.C. 1.1.99.5.) was studied by chemical modificationin situ with different amino acid side chain specific reagents in mitochondria isolated from hamster brown adipose tissue. The SH-modifying reagents have only slight effect on the enzyme activity. The most effective chemicals were tetranitromethane and diazobenzene sulfonic acid. The enzyme activity can be abolished completely by both of them. In the presence of Ca2+ and/or glycerol-3-phosphate inhibition was greater at the same electrophilic reagent concentration. The effect of Ca2+ and glycerol-3-phosphate is nonadditive on inhibition by these reagents.  相似文献   

6.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   

7.
Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess ‘moonlighting’ activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca2+, ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction.  相似文献   

8.
Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2''-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn2+ buffering is impaired due to acidosis and oxidative stress.  相似文献   

9.
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.  相似文献   

10.
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial “gas pedal”, supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate–aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.  相似文献   

11.
d-Lactate dehydrogenase from the depressor muscle of the giant barnacle, Balanus nubilus Darwin, was purified to homogeneity. The molecular weight of this enzyme, as judged by meniscus depletion sedimentation equilibrium and gel filtration, corresponds to a tetrameric subunit organization unlike the d-lactate dehydrogenases from the horeseshoe crab, Limulus polyphemus, and the polychaete, Nereis virens, which are dimeric. It is concluded that substrate stereospecificity and the degree of subunit organization are two independent parameters in the evolution of lactate dehydrogenases. The amino acid composition of B. nubilusd-lactate dehydrogenase shows general similarities to both the Limulus enzyme and the l-lactate dehydrogenase from the lobster, Homarus americanus, except for an unusually high cysteine content (10 residues per subunit). The isoelectric point of the barnacle enzyme is 5.0. B. nubilusd-lactate dehydrogenase is clearly a muscle-type enzyme, as it displays very little substrate inhibition at high pyruvate concentrations. The catalytic properties of this enzyme, including high reactivity with α-ketobutyrate and α-hydroxybutyrate, lowered pH optimum (7.5) for lactate oxidation, and relative insensitivity to oxamate, also set it apart from other animal d-lactate dehydrogenases.  相似文献   

12.
A thermostable homodimeric isocitrate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was purified and characterized. The mol. mass of the isocitrate dehydrogenase subunit was 42 kDa as determined by SDS-PAGE. Following separation by SDS-PAGE, A. fulgidus isocitrate dehydrogenase could be renatured and detected in situ by activity staining. The enzyme showed dual coenzyme specificity with a high preference for NADP+. Optimal temperature for activity was 90° C or above, and a half-life of 22 min was found for the enzyme when incubated at 90° C in a 50 mM Tricine-KOH buffer (pH 8.0). Based on the N-terminal amino acid sequence, the gene encoding the isocitrate dehydrogenase was cloned. DNA sequencing identified the icd gene as an open reading frame encoding a protein of 412 amino acids with a molecular mass corresponding to that determined for the purified enzyme. The deduced amino acid sequence closely resembled that of the isocitrate dehydrogenase from the archaeon Caldococcus noboribetus (59% identity) and bacterial isocitrate dehydrogenases, with 57% identity with isocitrate dehydrogenase from Escherichia coli. All the amino acid residues directly contacting substrate and coenzyme (except Ile-320) in E. coli isocitrate dehydrogenase are conserved in the enzyme from A. fulgidus. The primary structure of A. fulgidus isocitrate dehydrogenase confirmes the presence of Bacteria-type isocitrate dehydrogenases among Archaea. Multiple alignment of all the available amino acid sequences of di- and multimeric isocitrate dehydrogenases from the three domains of life shows that they can be divided into three distinct phylogenetic groups. Received: 6 February 1997 / Accepted: 12 June 1997  相似文献   

13.
Effects of Ca2+ on the activity and stability of methanol dehydrogenase   总被引:1,自引:0,他引:1  
The effects of exogenously added Ca2+ on the enzymatic activity and structural stability of methanol dehydrogenase were studied for various Ca2+ concentrations. Methanol dehydrogenase activity increased significantly with increasing concentration of Ca2+, approaching saturation at 200 mM Ca2+. The effect of Ca2+ on the activation of MDH was time dependent and Ca2+ specific and was due to binding of the metal ions to the enzyme. Addition of increasing concentration of Ca2+ caused a decrease of the intrinsic tryptophan fluorescence intensity in a concentration-dependent manner to a minimum at 200 mM, but with no change in the fluorescence emission maximum wavelength or the CD spectra. The results revealed that the activation of methanol dehydrogenase by Ca2+ occurred concurrently with the conformational change. In addition, exogenously bound Ca2+ destabilized MDH. The potential biological significance of these results is discussed.  相似文献   

14.
A rapid and efficient procedure has been developed for the purification of α-glycerophosphate dehydrogenase from the tephritid fly Anastrepha suspensa. This procedure is applicable to the isolation of the enzyme from other tephritids. The A. suspensa α-glycerophosphate dehydrogenase is dimeric with a molecular weight of 70,000 and a subunit molecular weight of 35,000. The pH optimum of the enzyme is 7.0. The amino acid composition is compared with that of other α-glycerophosphate dehydrogenases. By means of the quantitative microcomplement fixation procedure the A. suspensa α-glycerophosphate dehydrogenase is compared immunologically to a variety of other tephritid and dipteran α-glycerophosphate dehydrogenases.  相似文献   

15.
This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase??crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact??and alamethicin??permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca2+, (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca2+, (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca2+ and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.  相似文献   

16.
The 2-oxoglutarate dehydrogenase of intact rat heart mitochondria is activated by Ca2+, with 50% activation at approximately 0.5 nmol of total Ca/mg of mitochondrial protein, in the presence of Pi and Mg2+. Mitochondrial Ca contents in excess of 2 nmol/mg of protein result in 100% activation of the enzyme. Investigation of Ca2+ release from the mitochondria using the metallochromic indicator Arsenazo III defines aS 0.5 of 5.4±0.4 nmol of Ca/mg of protein, when the endogenous Ca content of the mitochondria is progressively depleted with EGTA, prior to the initiation of the release process being studied. The subsequent determination of matrix free Ca2+ concentration by the null-point technique has allowed expression of these results in terms of free concentration rather than Ca content, with an activity coefficient of approximately 0.001 for matrix Ca2+. From the above, Ca2+ efflux from heart mitochondria is not saturated at the mitochondrial Ca contents or Ca2+ concentrations which give effective regulation of dehydrogenase activity. A consequence is that heart mitochondria do not buffer the pCa of the extramitochondrial medium at these Ca contents (<2 nmol/mg of protein), and this is shown in direct measurements of extramitochondrial pCa. This is taken to question the physiological significance of mitochondrial buffering of cytosolic free Ca2+ in normal heart.  相似文献   

17.
Calcium-activated proteolytic activity in rat liver mitochondria   总被引:1,自引:0,他引:1  
Soluble extracts from sonicated rat liver mitochondria and rat liver cytosol were each chromatographed on DEAE-cellulose columns, and the fractions assayed for Ca2+-activated proteolytic activity using 14C-casein as a substrate. The mitochondrial preparations were shown to be free of cytosolic and microsomal contamination by the lack of alcohol dehydrogenase activity, a cytosolic marker enzyme, and by a lack of cytochrome P-450 activity, a microsomal marker enzyme. Two peaks of Ca2+-activated neutral endoprotease activity were resolved from the mitochondrial fractions. One protease was half-maximally activated with 25 μM Ca2+, and the other by 750 μM Ca2+. Rat liver cytosol contained only a high Ca2+-requiring protease peak. This is the first demonstration of Ca2+-activated proteases in mitochondria.  相似文献   

18.
Treatment of E. coli extract with iron/ascorbate preferentially inactivated NADP-isocitrate dehydrogenase without affecting glucose-6-phosphate dehydrogenase. NADP-Isocitrate dehydrogenase required divalent metals such as Mg2+, Mn2+ or Fe2+ ion. Iron/ascorbate-dependent inactivation of the enzyme was accompanied with the protein fragmentation as judged by SDS-PAGE. Catalase protecting the enzyme from the inactivation suggests that hydroxyl radical is responsible for the inactivation with fragmentation. TOF-MS analysis showed that molecular masses of the enzyme fragments were 36 and 12, and 33 and 14 kDa as minor components. Based on the amino acid sequence analyses of the fragments, cleavage sites of the enzyme were identified as Asp307-Tyr308 and Ala282-Asp283, which are presumed to be the metal-binding sites. Ferrous ion bound to the metal-binding sites of the E. coli NADP-isocitrate dehydrogenase may generate superoxide radical that forms hydrogen peroxide and further hydroxyl radical, causing inactivation with peptide cleavage of the enzyme. Oxidative inactivation of NADP-isocitrate dehydrogenase without affecting glucose 6-phosphate dehydrogenase shows only a little influence on the antioxidant activity supplying NADPH for glutathione regeneration, but may facilitate flux through the glyoxylate bypass as the biosynthetic pathway with the inhibition of the citric acid cycle under aerobic growth conditions of E. coli.  相似文献   

19.
20.
The pyruvate dehydrogenase complex (PDC) in pea (Pisum sativum L., cv. Little Marvel) was studied immunologically using antibodies to specific subunits of mammalian PDC. Pea mitochondria and chloroplasts were both found to contain PDC, but distinct differences were noted in the subunit relative molecular mass (Mr) values of the individual enzymes in the mitochondrial and chloroplast PDC complexes. In particular, the mitochondrial E3 enzyme (dihydrolipoamide dehydrogenase; EC 1.8.1.4) has a high subunit Mr value of 67 000, while the chloroplast E3 enzyme has a subunit Mr value of 52 000, similar in size to the prokaryotic, yeast ad mammalian E3 enzymes. In addition, component X (not previously noted in plant PDC) was also found to be present in two distinct forms in pea mitochondrial and chloroplast complexes. As in the case of E3, mitochondrial component X has a higher subunit Mr value (67 000) than component X from chloroplasts (48 000), which is similar in size to its mammalian counterpart. The subunit Mr value of E2 (dihydrolipoamide acetyltransferase; EC 2.3.1.12) in both mitochondria and chloroplasts (50 000) is lower than that of mammalian E2 (74 000) but similar to that of yeast E2 (58 000), and is consistent with the presence of only a single lipoyl domain. Neither mitochondria nor chloroplasts showed any appreciable cross-reactivity with antiserum to mammalian E1 (pyruvate dehydrogenase; EC 1.2.4.1). However, mitochondria cross-reacted strongly with antiserum to yeast E1, giving a single band (Mr 41 000) which is thought to be E1a. Chloroplasts showed no cross-reactivity with yeast E1, indicating that the mitochondrial E1a subunit and its chloroplast equivalent are antigenically distinct polypeptides.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - Mr relative molecular mass - PDC pyruvate dehydrogenase multienzyme complex - SDS sodium dodecyl sulphate The financial support of the Agricultural and Food Research Council is gratefully acknowledged. We thank Steve Hill (Department of Botany, University of Edinburgh, UK) for advice on mitochondrial isolation, and James Neagle (Department of Biochemistry, University of Glasgow) and Ailsa Carmichael for helpful discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号