首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neurotoxic effects of amyloid β peptides are mediated through deregulation of intracellular Ca2+ homeostasis and signaling, but relatively little is known about amyloid β modulation of Ca2+ homeostasis and its pathological influence on glia. Here, we found that amyloid β oligomers caused a cytoplasmic Ca2+ increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca2+ release. Furthermore, amyloid β peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2α phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid β oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple‐transgenic mouse model of Alzheimer's disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid β oligomer load in 12‐month‐old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid β oligomers disrupt ER Ca2+ homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.  相似文献   

3.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

4.
Procaspase-activating compound-1 (PAC-1) is the first direct caspase-activating compound discovered; using an in vitro cell-free system of caspase activation. Subsequently, this compound was shown to induce apoptosis in a variety of cancer cells with promising in vivo antitumor activity in canine lymphoma model. Recently, we have reported its ability to kill drug-resistant, Bcl-2/Bcl-xL overexpressing and Bax/Bak-deficient cells despite the essential requirement of mitochondrial cytochrome c (cyt. c) release for caspase activation, indicating that the key molecular targets of PAC-1 in cancer cells are yet to be identified. Here, we have identified Ero1α-dependent endoplasmic reticulum (ER) calcium leakage to mitochondria through mitochondria-associated ER membranes (MAM) and ER luminal hyper-oxidation as the critical events of PAC-1-mediated cell death. PAC-1 treatment upregulated Ero1α in multiple cell lines, whereas silencing of Ero1α significantly inhibited calcium release from ER and cell death. Loss of ER calcium and hyper-oxidation of ER lumen by Ero1α collectively triggered ER stress. Upregulation of GRP78 and splicing of X-box-binding protein 1 (XBP1) mRNA in multiple cancer cells suggested ER stress as the general event triggered by PAC-1. XBP1 mRNA splicing and GRP78 upregulation confirmed ER stress even in Bax/Bak double knockout and PAC-1-resistant Apaf-1-knockout cells, indicating an induction of ER stress-mediated mitochondrial apoptosis by PAC-1. Furthermore, we identified BH3-only protein p53 upregulated modulator of apoptosis (PUMA) as the key molecular link that orchestrates overwhelmed ER stress to mitochondria-mediated apoptosis, involving mitochondrial reactive oxygen species, in a p53-independent manner. Silencing of PUMA in cancer cells effectively reduced cyt. c release and cell death by PAC-1.  相似文献   

5.
Apelin, a newly identified bioactive adipokine, has been found to play important roles in multiple diseases, including diabetes, hypertension and cardiovascular diseases with unclear molecular mechanisms. The present study aimed to investigate the effects of apelin on endoplasmic reticulum (ER) stress in the pancreas of Akita mice, a well-established type 1 diabetic model. Apelin-13 (400 pmol/kg) was injected from tail vein for 10 weeks. The physiological characters of experimental animals were evaluated, pancreatic islet morphology and insulin content were assessed by immunohistochemistry, and ER stress markers in the pancreas were examined by Western blots. Our results indicate apelin treatment significantly ameliorates diabetes-induced reduction in pancreatic islet mass and insulin content. Further studies suggested apelin treatment alleviates ER stress by inhibiting the diabetes induced up-regulation of PERK and IRE1α and chaperones (GRP78, calnexin and Hsp70) levels in Akita mice. We also demonstrated that apelin treatment normalizes the diabetes induced alteration of AKT and ERK activations in the pancreas of Akita mice. Taken together, these results suggest a novel physiological role of apelin in alleviating ER stress in the pancreas of type 1 diabetes.  相似文献   

6.
Acute ethanol loading causes oxidative stress to activate cell-death signaling via c-Jun NH2-terminal kinase (JNK) in livers. JNK are stimulated under conditions of endoplasmic reticulum (ER) stress which causes programmed cell death. However, no remarked cell death was observed in acute ethanol intoxication. Akt, one of the cell survival protein kinases, may be activated under ethanol loading. The aim of this study was to estimate activation of JNK and ER stress, role of ethanol metabolism on the activation, and association of JNK with Akt under acute ethanol loading using the perfused rat liver system. Activation of JNK or Akt and association of JNK and Akt with JNK interacting protein 1 were estimated by immunoprecipitation and immunoblotting. Expression of 78 kDa glucose-regulated protein (GRP78) mRNA, a biomarker of ER stress, was detected by quantitative real-time RT-PCR. Activations of JNK and Akt were enhanced by co-treatment with ethanol and a classical inhibitor of alcohol dehydrogenase (ADH). Addition of an antioxidant reduced the activation of JNK. Ethanol loading with ADH inhibition causes down-regulation of GRP78 mRNA levels. Therefore, these findings suggest first revelation that inhibition of ethanol metabolism complicates oxidative and ER stresses produced by ethanol.  相似文献   

7.
We have shown cardiac protection by metallothionein (MT) in the development of diabetic cardiomyopathy (DCM) via suppression of cardiac cell death in cardiac-specific MT-overexpressing transgenic (MT-TG) mice. The present study was undertaken to define whether diabetes can induce cardiac endoplasmic reticulum (ER) stress and whether MT can prevent cardiac cell death via attenuating ER stress. Diabetes was induced by streptozotocin in both MT-TG and wild-type (WT) mice. Two weeks, and 2 and 5 months after diabetes onset, cardiac ER stress was detected by expression of ER chaperones, and apoptosis was detected by CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3 and caspase-12. Cardiac apoptosis in the WT diabetic mice, but not in MT-TG diabetic mice, was significantly increased 2 weeks after diabetes onset. In parallel with apoptotic effect, significant up-regulation of the ER chaperones, including glucose-regulated protein (GRP)78 and GRP94, cleaved ATF6 and phosporylated eIF2α, in the hearts of WT, but not MT-TG diabetic mice. Infusion of angiotensin II (Ang II) also significantly induced ER stress and apoptosis in the hearts of WT, but not in MT-TG mice. Direct administration of chemical ER stress activator tunicamycin significantly increased cardiac cell death only in WT mice. Pre-treatment with antioxidants completely prevented Ang II-induced ER stress and apoptosis in the cultured cardiac cells. These results suggest that ER stress exists in the diabetic heart, which may cause the cardiac cell death. MT prevents both diabetes- and Ang II-induced cardiac ER stress and associated cell death most likely via its antioxidant action, which may be responsible for MT's prevention of DCM.  相似文献   

8.
It has been reported that the gum resin of Boswellia serrata (BS), which has been shown to have antiinflammatory properties, might also have anticancer effects. This study examined the potential of BS as an anticancer agent. The BS extract induces apoptosis in HeLa human cervical carcinoma cells, as confirmed by two apoptosis analyses, Hoechst staining and Annexin V/PI assay. Among the apoptosis pathways, the ER stress-associated mechanism was examined to determine its role in BS-induced apoptosis. The expression of GRP78 and CHOP, which are representatives of the ER stress proteins, and the calcium-binding protein-calpain were determined. The results showed significantly higher levels of both GRP78 and CHOP, and stronger calpain activity in the BS-treated cells than in the control cells. This shows that there is a correlation between ER stress signaling and apoptosis, which suggests the possibility of the BS-ER stress initiator as an anticancer therapeutic agent in human cervical carcinoma.  相似文献   

9.
Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming −702/GRP78-Luc and −443/CHOP-Luc construct, respectively. We demonstrated that −702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of −443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that −443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.  相似文献   

10.
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP+. More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.  相似文献   

11.
ER chaperones in mammalian development and human diseases   总被引:14,自引:0,他引:14  
Ni M  Lee AS 《FEBS letters》2007,581(19):3641-3651
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.  相似文献   

12.
13.
We have previously shown that infusion of bone marrow cells (BMC) improves CCl4-induced cirrhosis. However, it is unclear why the injected BMC are resistant to CCl4 damage and subsequently improve the local microenvironment in damaged liver. To analyze the cellular phenomena involved in this process, we studied the damaged liver using electron microscopy. We found that CCl4 caused rough endoplasmic reticula to swell in hepatocytes. To analyze the gene expression patterns associated with this process, we conducted PCR-selected suppressive subtractive hybridization. We found that expression levels of HSP84, HSP40, and XBP1 differed markedly between control liver and liver infused with BMC. Immunohistochemical staining revealed that expression levels of HSP84 and HSP40 were markedly higher in the early phase of differentiation immediately after BMC infusion, but decreased over time. XBP1 expression remained high during the late phase, and GRP78 expression increased with XBP1 activation. We also found that GFP-positive BMC expressed XBP1 and GRP78. XBP1 and GRP78 are associated with ER stress. Thus, continuous high XBP1 and GRP78 expression might be essential for the survival and proliferation of BMC in a CCl4-induced persistent liver damage environment.  相似文献   

14.
The 78-kDa glucose-regulated protein (GRP78) is an important molecular chaperone in the endoplasmic reticulum (ER) induced by various stresses. This study showed that stimulation with anti-CD3 mAb, PMA plus ionomycin, or an antigen increased the levels of GRP78 mRNA in primary T cells, which was inhibited by Ca2+ chelators EGTA and BAPTA-AM and by an inhibitor of calcineurin FK506. In addition, the specific knockdown of GRP78 protein expression induced apoptosis in mouse EL-4 T cell line associated with CHOP induction and caspase-3 activation. Furthermore, overexpression of GRP78 inhibited PMA/ionomycin-induced cell death in EL-4 cells. Collectively, GRP78 expression is induced by TCR activation via a Ca2+-dependent pathway and may play a critical role in maintaining T cell viability in the steady and TCR-activated states. These results suggest a novel regulatory mechanism and an essential function of GRP78 in T cells.  相似文献   

15.
Osteoarthritis (OA), characterized by pain and stiffness, swelling, deformity and dysfunction of joints, affects large numbers of population. The purpose of this study was to discover the effects of taurine in human OA chondrocytes and explore the underlying mechanisms. 46 patients with different grades of OA were recruited. Of these patients, 24 underwent total knee replacement and cartilages were harvested. The mRNA expressions of type II collagen (Collagen II) and endoplasmic reticulum (ER) stress markers (GRP78, GADD153 and Caspase-12) in cartilages were quantified by qRT-PCR. Cell viability and apoptosis of patient-derived chondrocytes were assessed by the CCK-8 assay and flow cytometry assay, respectively. Meanwhile, protein levels of Collagen II and ER stress markers both in cartilages and chondrocytes were evaluated by Western blot. The mRNA and protein levels of Collagen II decreased as OA progressed, while the expressions of ER stress markers increased dramatically. H2O2 induced ER stress in chondrocytes, as shown by the significant increase in the expression of ER stress markers, inhibited chondrocyte viability and Collagen II synthesis, promoted apoptosis. However, taurine treatment inhibited these above phenomena. These results indicated that taurine exhibited anti-OA effect by alleviating H2O2 induced ER stress and subsequently inhibiting chondrocyte apoptosis.  相似文献   

16.
Quinotrierixin was isolated from microbes as an inhibitor of ER stress-induced XBP1 mRNA splicing, but its mode of action was unclear. We found that quinotrierixin is an inhibitor of protein synthesis, and that the required dose range of quinotrierixin to inhibit ER stress-induced XBP1 mRNA splicing was similar to that to inhibit protein synthesis. Furthermore, we also found that quinotrierixin inhibited the ER stress-induced increases of unfolded protein response-related genes such as GRP78, CHOP, EDEM, ERdj4, and p58IPK. Thus, we showed that quinotrierixin inhibited the ER stress-induced unfolded protein response, possibly due to its inhibitory activity of protein synthesis.  相似文献   

17.
The increased risk of venous thromboembolism in cancer patients has been attributed to enhanced tissue factor (TF) procoagulant activity (PCA) on the surface of cancer cells. Recent studies have shown that TF PCA can be modulated by GRP78, an endoplasmic reticulum (ER)-resident molecular chaperone. In this study, we investigated the role of cell surface GRP78 in modulating TF PCA in several human cancer cell lines. Although both GRP78 and TF are present on the cell surface of cancer cells, there was no evidence of a stable interaction between recombinant human GRP78 and TF, nor was there any effect of exogenously added recombinant GRP78 on cell surface TF PCA. Treatment of cells with the ER stress-inducing agent thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca2+ pump that causes Ca2+ efflux from ER stores, increased cytosolic [Ca2+] and induced TF PCA. Consistent with these findings, anti-GRP78 autoantibodies that were isolated from the serum of patients with prostate cancer and bind to a specific N-terminal epitope (Leu98–Leu115) on cell surface GRP78, caused a dose-dependent increase in cytosolic [Ca2+] and enhanced TF PCA. The ability to interfere with cell surface GRP78 binding, block phospholipase C activity, sequester ER Ca2+, or prevent plasma membrane phosphatidylserine exposure resulted in a significant decrease in the TF PCA induced by anti-GRP78 autoantibodies. Taken together, these findings provide evidence that engagement of the anti-GRP78 autoantibodies with cell surface GRP78 increases TF PCA through a mechanism that involves the release of Ca2+ from ER stores. Furthermore, blocking GRP78 signaling on the surface of cancer cells attenuates TF PCA and has the potential to reduce the risk of cancer-related venous thromboembolism.  相似文献   

18.
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress (ERS), and triggers the unfolded protein response (UPR) that consequently reduces accumulation of unfolded proteins by increasing the quantity of ER chaperones. Calumenin, a Ca2+-binding protein with multiple EF hand motifs, which is located in the ER/SR, is highly expressed during the early developmental stage of the heart, similar to other ER-resident chaperones. The aim of this study was to investigate the functional role of calumenin during ERS in the heart. Like other chaperones (e.g., GRP94 and GRP78), calumenin expression was highly upregulated during ERS induced by 10 μg/ml tunicamycin, but attenuated in the presence of 500 μM PBA, the chemical chaperone in neonatal rat ventricular cardiomyocytes (NRVCs). Upon 7.5-fold overexpression of calumenin using a recombinant adenovirus system, the expression levels of ERS markers (GRP78, p-PERK, and p-elF2α) and ER-initiated apoptosis markers (CHOP and p-JNK) were reduced, whereas the survival protein BCL-2 was upregulated during ERS compared to the control. Evaluation of cell viability by TUNEL assay showed that apoptosis was also significantly reduced by calumenin overexpression in ERS-induced cells. Taken together, our results suggest that calumenin plays an essential role in the alleviation of ERS in neonatal rat cardiomyocytes.  相似文献   

19.
Abstract

Hydrogen sulfide (H2S) shows antioxidative, anti-inflammatory, antiapoptotic, and cytoprotective effects in kidneys. Recently, H2S has been reported to alleviate uranium-induced rat nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Here, the protective effect and molecular mechanism of H2S on uranium-induced apoptosis were examined in normal rat kidney proximal cells (NRK-52E) in vitro. The results indicate that NaHS (an H2S donor) administration in uranium-intoxicated kidney cells ameliorated uranium-induced reactive oxygen species generation, caspase-3-dependent apoptosis, and endoplasmic reticulum (ER) stress identified through several key markers including GRP78, C/EBP homologous protein (CHOP), and caspase-12. NaHS treatment in uranium-intoxicated kidney cells abolished the effects of uranium on Akt phosphorylation, GSK-3β activation, increased Fyn nuclear expression, and concomitantly decreased Nrf2 nuclear expression. NaHS administration in uranium-treated kidney cells resorted uranium-decreased the expression of two key subunit PSMA6 and PSMB7 in 20S proteasome. But, DRB (an Nrf2 inhibitor) administration abrogated the effects of NaHS on PSMA6 and PSMB7 expression in uranium-contaminated kidney cells. Bortezomib (a proteasome inhibitor) treatment in NaHS pulsing uranium cotreated kidney cells reversed the effects of NaHS on not only PSMA6 and PSMB7 but also GRP78 and CHOP. Taken together, all data suggest that H2S can attenuate uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling axis.  相似文献   

20.
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号