首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social learning of floral odours inside the honeybee hive   总被引:11,自引:0,他引:11  
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.  相似文献   

2.
Reliable retention of olfactory learning following a 1-trial classical conditioning of the proboscis extension reflex (PER) is not achieved in honeybees until they are 6-7 days old. Here we show that treatment of newly emerged honeybees with juvenile hormone (JH) has a profound effect on the maturation of short-term olfactory memory. JH-treated individuals display excellent short-term (1 h) memory of associative learning at times as early as 3 days of age and perform consistently better than untreated bees for at least the first week of their lives. By contrast, the retention of long-term (24 h) memory following a 3-trial conditioning of the PER is not significantly improved in JH-treated bees. Our study also shows that experience and (or) chemosensory activation are not essential to improve learning performance in olfactory tasks. The lack of accelerated development of long-term retention of olfactory memories in JH-treated honeybees is discussed in the context of neural circuits suspected to mediate memory formation and retrieval in the honeybee brain.  相似文献   

3.
The degree of heavy metal (Hg, Cr, Cd, and Pb) pollution in honeybees (Apis mellifera) was investigated in several sampling sites around central Italy including both polluted and wildlife areas. The honeybee readily inhabits all environmental compartments, such as soil, vegetation, air, and water, and actively forages the area around the hive. Therefore, if it functions in a polluted environment, plant products used by bees may also be contaminated, and as a result, also a part of these pollutants will accumulate in the organism. The bees, foragers in particular, are good biological indicators that quickly detect the chemical impairment of the environment by the high mortality and the presence of pollutants in their body or in beehive products. The experiment was carried out using 24 colonies of honeybees bred in hives dislocated whether within urban areas or in wide countryside areas. Metals were analyzed on the foragers during all spring and summer seasons, when the bees were active. Results showed no presence of mercury in all samples analyzed, but honeybees accumulated several amounts of lead, chromium, and cadmium. Pb reported a statistically significant difference among the stations located in urban areas and those in the natural reserves, showing the highest values in honeybees collected from hives located in Ciampino area (Rome), next to the airport. The mean value for this sampling station was 0.52 mg kg−1, and July and September were characterized by the highest concentrations of Pb. Cd also showed statistically significant differences among areas, while for Cr no statistically significant differences were found.  相似文献   

4.
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors.  相似文献   

5.
Avoiding toxins in food is as important as obtaining nutrition. Conditioned food aversions have been studied in animals as diverse as nematodes and humans [1, 2], but the neural signaling mechanisms underlying this form of learning have been difficult to pinpoint. Honeybees quickly learn to associate floral cues with food [3], a trait that makes them an excellent model organism for studying the neural mechanisms of learning and memory. Here we show that honeybees not only detect toxins but can also learn to associate odors with both the taste of toxins and the postingestive consequences of consuming them. We found that two distinct monoaminergic pathways mediate learned food aversions in the honeybee. As for other insect species conditioned with salt or electric shock reinforcers [4-7], learned avoidances of odors paired with bad-tasting toxins are mediated by dopamine. Our experiments are the first to identify a second, postingestive pathway for learned olfactory aversions that involves serotonin. This second pathway may represent an ancient mechanism for food aversion learning conserved across animal lineages.  相似文献   

6.
Since the beginning of the last century, the number of biological invasions has continuously increased worldwide. Due to their environmental and economical consequences, invasive species are now a major concern. Social wasps are particularly efficient invaders because of their distinctive biology and behavior. Among them, the yellow-legged hornet, Vespa velutina, is a keen hunter of domestic honeybees. Its recent introduction to Europe may induce important beekeeping, pollination, and biodiversity problems. Hornets use olfactory cues for the long-range detection of food sources, in this case the location of honeybee colonies, but the exact nature of these cues remains unknown. Here, we studied the orientation behavior of V. velutina workers towards a range of hive products and protein sources, as well as towards prominent chemical substances emitted by these food sources. In a multiple choice test performed under controlled laboratory conditions, we found that hornets are strongly attracted to the odor of some hive products, especially pollen and honey. When testing specific compounds, the honeybee aggregation pheromone, geraniol, proved highly attractive. Pheromones produced by honeybee larvae or by the queen were also of interest to hornet workers, albeit to a lesser extent. Our results indicate that V. velutina workers are selectively attracted towards olfactory cues from hives (stored food, brood, and queen), which may signal a high prey density. This study opens new perspectives for understanding hornets’ hunting behavior and paves the way for developing efficient trapping strategies against this invasive species.  相似文献   

7.
The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.  相似文献   

8.
Hasegawa Y  Ikeno H 《PloS one》2011,6(5):e19619
It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250-300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment.  相似文献   

9.
【目的】明确意大利蜜蜂Apis mellifera ligustica(简称“意蜂”)对两种油菜(甘蓝型胜利油菜 Brassica napus cv. Shengli和芥菜型马尾油菜 B. juncea cv. Mawei)的气味偏爱性及选择行为特征。【方法】本研究开展大田访花偏爱性试验、室外群体气味偏爱性试验以及室内“Y”型嗅觉仪行为反应和学习记忆试验,测定意蜂蜂群及青年采集蜂对甘蓝型胜利油菜和芥菜型马尾油菜两种油菜花朵的选择次数,并通过采集蜂训练时及训练后的喙伸反应率分析两种油菜花朵气味对采集蜂学习记忆能力的影响,最终评估意蜂蜂群及个体对这两种油茶花朵气味的选择性。【结果】大田试验12:00-13:00时间段,访问胜利油菜的意蜂数量显著高于访问马尾油菜的数量(P<0.05)。群体气味偏爱性试验14:00-15:00时间段意蜂访问胜利油菜的数量显著高于访问马尾油菜的数量(P<0.05)。行为反应试验结果显示意蜂选择胜利油菜的次数(3.86±2.83)显著高于访问马尾油菜的次数(2.28±1.87)(P<0.05)。在学习记忆试验中,随着训练次数的增加,意蜂对两种油菜花朵气味的喙伸反应率逐渐升高,相同的训练次数,意蜂对两种油菜气味的学习能力差异不显著(P>0.05);训练结束后,随着时间的增加,意蜂对胜利油菜及马尾油菜的气味记忆逐渐下降,在24 h对胜利油菜的气味记忆明显高于对马尾油菜的气味记忆(P<0.05)。【结论】本研究证明意蜂较偏爱胜利油菜的花朵气味,花朵气味是影响其采集偏爱的重要因素,气味响应性试验可定量分析蜜蜂对花朵气味的嗅觉敏感性。  相似文献   

10.
Social insect colonies face the challenge of adjusting the behavior of individuals performing various tasks to a changing environment. It has been shown in several species that characteristics of interaction patterns between nestmates provide social information that allows individuals to adjust their behavior in adaptive ways. A well-studied example is the modulation of recruitment by dancing in honeybees ( Apis mellifera ) in response to the time, the foragers have to search for unloading partners and the number of unloading bees. Here we tested if experiences that hive bees acquired during past social interactions affect interactions with the incoming foragers. Bees returning with food containing a floral scent that was familiar to the hive bees from previous interactions had more food receivers during unloading and more followers during dancing displays compared with foragers returning with food containing a novel scent or unscented food. We also confirm that the number of receivers during food unloading is positively related to the motivation to dance immediately after unloading. Our results show that prior social experiences affect the ways in which individuals interact in the context of honeybee nectar collection and, therefore, how learning in hive bees contributes to the organization of this collective task.  相似文献   

11.
Equipped with a mini brain smaller than one cubic millimeter and containing only 950,000 neurons, honeybees could be indeed considered as having rather limited cognitive abilities. However, bees display a rich and interesting behavioral repertoire, in which learning and memory play a fundamental role in the framework of foraging activities. We focus on the question of whether adaptive behavior in honeybees exceeds simple forms of learning and whether the neural mechanisms of complex learning can be unraveled by studying the honeybee brain. Besides elemental forms of learning, in which bees learn specific and univocal links between events in their environment, bees also master different forms of non-elemental learning, including categorization, contextual learning and rule abstraction, both in the visual and in the olfactory domain. Different protocols allow accessing the neural substrates of some of these learning forms and understanding how complex problem solving can be achieved by a relatively simple neural architecture. These results underline the enormous richness of experience-dependent behavior in honeybees, its high flexibility, and the fact that it is possible to formalize and characterize in controlled laboratory protocols basic and higher-order cognitive processing using an insect as a model. This paper is dedicated to the memory of Guillermo ‘Willy’ Zaccardi (1972–2007), disciple and friend beyond time and distance, who will always be remembered with a smile.  相似文献   

12.
The honeybee is an excellent model organism for research on learning and memory among invertebrates. Learning and memory in honeybees has intrigued neuroscientists and entomologists in the last few decades, but attention has focused almost solely on the Western honeybee, Apis mellifera. In contrast, there have been few studies on learning and memory in the Eastern honeybee, Apis cerana. Here we report comparative behavioral data of color and grating learning and memory for A. cerana and A. mellifera in China, gathered using a Y-maze apparatus. We show for the first time that the learning and memory performance of A. cerana is significantly better on both color and grating patterns than that of A. mellifera. This study provides the first evidence of a learning and memory difference between A. cerana and A. mellifera under controlled conditions, and it is an important basis for the further study of the mechanism of learning and memory in honeybees.  相似文献   

13.
A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees’ hives.  相似文献   

14.
李莉  刘芳  苏松坤 《昆虫知识》2012,49(4):1061-1065
蜜蜂复杂的社会行为受到了研究者的广泛关注,了解蜜蜂的学习、记忆、导航、信息传递等行为的神经分子基础,可对探索人类自身的脑科学和复杂社会行为的分子基础提供比较研究信息。本文综述了多巴胺的作用机制及其在蜜蜂行为中的作用,详细介绍了蜜蜂脑部的多巴胺受体,总结了蜜蜂脑部多巴胺水平的影响因子等,最后对进一步研究多巴胺神经通路对蜜蜂行为的作用及机制的前景做一展望。  相似文献   

15.
Su S  Cai F  Si A  Zhang S  Tautz J  Chen S 《PloS one》2008,3(6):e2365
The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct 'dialects' of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc), and the European bee Apis mellifera ligustica (Aml). Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language.  相似文献   

16.
The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°–3.8°) and relatively olfactory threshold (concentration of 50–25 %) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.  相似文献   

17.
Although the forelegs of honeybees are one of their main gustatory appendages, tarsal gustation in bees has never been systematically studied. To provide a more extensive account on honeybee tarsal gustation, we performed a series of behavioral experiments aimed at characterizing (1) tarsal sucrose sensitivity under different experimental conditions and (2) the capacity of tarsal sucrose stimulation to support olfactory conditioning. We quantified the proboscis extension reflex to tarsal sucrose stimulation and to odors paired with tarsal sucrose stimulation, respectively. Our experiments show that tarsal sucrose sensitivity is lower than antennal sucrose sensitivity and can be increased by starvation time. In contrast, antennae amputation decreases tarsal sucrose sensitivity. Furthermore, we show that tarsal sucrose stimulation can support olfactory learning and memory even if the acquisition level reached is relatively low (40%).  相似文献   

18.
The involvement of the cholinergic system in learning and memory in honeybees has been well established using olfactory conditioning. We examined the effect of Methyl Parathion (MeP), an acetylcholinesterase inhibitor of the organo-phosphate family, on the learning and recall of visual and olfactory discrimination tasks in honeybees. One of our expectations was to observe the effects induced by both the nicotinic and muscarinic systems, as the blocking of acetylcholinesterase should induce an increase in the activity of both systems. We were also interested in knowing whether the type of tasks could influence the results. The visual tasks involved learning to discriminate the orientation of gratings in a Y-maze; the olfactory task involved learning to discriminate odours in a proboscis extension reflex (PER) paradigm. The results indicate that MeP treatment enhances recall of learned tasks in the visual and olfactory domains, but it does not affect the acquisition phase in either domain. Surprisingly, MeP treatment led to muscarinic-like effects but failed to mimic the nicotinic-like effects already described in relation to learning phases in honeybees. Implications for the role of cholinergic pathways in learning and memory and the nature of their involvement are discussed, and a hypothesis relating to the organisation of the cholinergic system and the relationship between the nicotinic and muscarinic systems in honeybees is proposed. The results are also discussed in terms of their ecotoxicological consequences.  相似文献   

19.
Small groups of honeybees (five to nine individuals) were trained to forage at feeders 150 m, 300 m and 800 m from an observation hive. Their behaviour in the hive and at the feeder was recorded by observers that maintained continuous radio contact with one another. At low concentrations of sugar in the feeder (0.5 mol x l(-1)) foragers do not dance in the hives, their flights to the feeder are often undertaken alone, they land immediately after arrival at the site and no recruits from the hive landed on the feeder during 30 h of observation. Raising the concentration of sugar in the feeder to 2 mol x l(-1) leads to vigorous dancing by the foragers and the gradual (over 10-15 min) synchronisation of their flights so that they arrive in groups of up to five bees at the feeder and undertake circular "buzzing" flights before landing. Such behaviour of the foragers is associated with the appearance of recruits which were never seen to fly around the feeder and land alone or before the foragers. Recruits typically circle the feeder together with foragers and land with them or continue their circling flights to land about 10 s later. While circling the feeder recruits, but not foragers, will fly after a moving lure if the presentation of the lure is accompanied by the release of geraniol scent. We propose that recruits that have witnessed a waggle dance are unlikely to find a non-scented feeder unless the foragers continue their flights to that feeder and provide supplementary visual and/or olfactory cues, at least in the vicinity of the feeder. We propose that the synchronisation of the flights of foragers and their behaviour at the feeding site is a strategy designed to overcome a navigational gap in the recruiting process in which the dance can indicate the general area of a food source but not the precise position of a highly localised site.  相似文献   

20.
Numerous studies suggest that honeybees may compete with native pollinators where introduced as non-native insects. Here we examine evidence for competition between honeybees and four bumblebee species in Scotland, a region that may be within the natural range of honeybees, but where domestication greatly increases the honeybee population. We examined mean thorax widths (a reliable measure of body size) of workers of Bombus pascuorum, B. lucorum, B. lapidarius and B. terrestris at sites with and without honeybees. Workers of all four species were significantly smaller in areas with honeybees. We suggest that reduced worker size is likely to have implications for bumblebee colony success. These results imply that, for conservation purposes, some restrictions should be considered with regard to placing honeybee hives in or near areas where populations of rare bumblebee species persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号