首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls’ reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.  相似文献   

2.
Alzheimer''s disease (AD) is the most common cause of dementia. One of the pathological hallmarks of AD is amyloid β (Aβ) deposition. MicroRNAs (miRNAs) are small non-coding RNAs whose expression levels change significantly during neuronal pathogenesis and may be used as diagnostic markers. Some miRNAs are important in AD development by targeting genes responsible for Aβ metabolism. However, a systematic assessment of the miRNA expression profile induced by Aβ-mediated neuronal pathogenesis is still lacking. In the present study, we examined miRNA expression profile by using the APPswe/PS1ΔE9 mouse model of AD. Two sibling pairs of mice were examined, showing 30 and 24 miRNAs with significantly altered expression levels from each paired control, respectively. Nine known miRNAs were common in both groups. Prediction of putative target genes and functional annotation implied that these altered miRNAs affect many target genes mainly involved in PI3K/Akt signaling pathway. This study provides a general profile of miRNAs regulated by Aβ-associated signal pathways, which is helpful to understand the mechanism of Aβ-induced neuronal dysfunction in AD development.  相似文献   

3.
4.
APPswe+PS1/ΔE9 transgenic (Tg) mice with Aβ plaque formation in neocortex and hippocampus were evaluated in tests measuring exploratory activity, anxiety, and memory ability using open field test (OFT), Y-maze, contextual fear conditioning (CFC), and Morris water maze (MWM). Wild type (WT) and Tg mice over eight months old showed same locomotion activity and anxiety level in novel stimulation, open field, and Y-maze contexts. In other experiments that measured associative memory and spatial memory in Tg mice and their littermates, the subjects also presented similar deficiencies in memory acquisition. These two aged groups showed abnormal freezing level variance especially in CFC test. In comparison to that in non-transgenic 8-week-old mice group, the acquisition of spatial memory in MWM task was impaired in aged WT and bigenic Tg mice. Taken together, aged wild-type littermates and Tg mice present similar deficits in associative learning and spatial memory independent of amyloid plaques.  相似文献   

5.
Human amniotic epithelial cells (HAECs), which exhibit characteristics of embryonic and pluripotent stem cells, could be utilized for cell therapy without legal or ethical problems. Double-transgenic (TG) mice (n=20) and wild-type (WT) mice (n=20) were randomly assigned to two groups, respectively. The transplantation group was treated with HAECs and the control group with PBS. A six-radial arm water maze was used to assess spatial memory. Immunofluorescence was utilized to track HAEC survival. Immunohistochemistry was used to determine octamer-binding protein 4 (oct-4) and nanog expression in the HAECs. High-performance liquid chromatography (HPLC) was used to measure acetylcholine levels in the hippocampus. The density of cholinergic neurons in the basal forebrain and nerve fibers in the hippocampus was measured following acetylcholinesterase staining. Results showed that transplanted HAECs survived for at least eight weeks and migrated to the third ventricle without immune rejection. Graft HAECs also expressed the specific stem cell markers oct-4 and nanog. Compared with the control group, HAEC transplantation significantly ameliorated spatial memory deficits in TG mice, as well as increased acetylcholine levels and the number of hippocampal cholinergic neurites. Intracerebroventricular HAEC transplantation improved spatial memory in double-TG mice, and results suggested that increased acetylcholine levels in the hippocampus, released by surviving cholinergic neurites, were responsible for this improvement.  相似文献   

6.
Amyloid-β (Aβ) deposition in the brain has been implicated in the development of Alzheimer's disease (AD), and neuroinflammation generates AD progression. Therapeutic effects of anti-inflammatory approaches in AD are still under investigation. Curcumin, a potent anti-inflammatory and antioxidant, has demonstrated therapeutic potential in AD models. However, curcumin's anti-inflammatory molecular mechanisms and its associated cognitive impairment mechanisms in AD remain unclear. The high-mobility group box-1 protein (HMGB1) participates in the regulation of neuroinflammation. Herein, we attempted to evaluate the anti-inflammatory effects of chronic oral administration of curcumin and HMGB1 expression in APP/PS1 transgenic mice AD model. We found that transgenic mice treated with a curcumin diet had shorter escape latencies and showed a significant increase in percent alternation, when compared with transgenic mice, in the Morris water maze and Y-maze tests. Additionally, curcumin treatment could effectively decrease HMGB1 protein expression, advanced glycosylation end product-specific receptor (RAGE), Toll-like receptors-4 (TLR4) and nuclear factor kappa B (NF-κB) in transgenic mice hippocampus. However, amyloid plaques detected with thioflavin-S staining in transgenic mice hippocampus were not affected by curcumin treatment. In contrast, curcumin significantly decreased GFAP-positive cells, as assessed by immunofluorescence staining. Taken together, these data indicate that oral administration of curcumin may be a promising agent to attenuate memory deterioration in AD mice, probably inhibiting the HMGB1-RAGE/TLR4-NF-κB inflammatory signalling pathway.  相似文献   

7.
Alzheimer''s disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.  相似文献   

8.
Neuregulin 1 (Nrg1) functions in neuronal migration, survival and differentiation as well as synaptogenesis during ontogenetic development and maintenance of synaptic functions in the adult mammalian brain. The neural adhesion molecule L1 (L1CAM) functions in similar overlapping, but also non-overlapping roles in the nervous system. In the present study, we therefore investigated some aspects of the functional relationship between Nrg1 and L1 in mammalian neural cells. Nrg1 regulates the expression of L1 in cultures of both human neuroblastoma SK-N-SH cells and mouse cortical and hippocampal neurons. To analyze the role of Nrg1 on L1 expression in vivo, young adult male mice received intraperitoneal injections of Nrg1 or PBS (vehicle control). The correlation between Nrg1 and L1 expression was tested by qPCR, Western blot analysis, and immunocytology. Our data indicate that neuregulin 1-β (Nrg1β) increases L1 expression in neurons of the cerebral cortex, and decreases expression in neurons of the hippocampus in vitro and in vivo. In addition, Nrg1 induces phosphorylation of its receptors, ErbB2 and ErbB4, the predominant ErbB receptors in the nervous system. These results show that Nrg1β affects expression of L1 in the central nervous system and in parallel activates the ErbB receptors for Nrg1, suggesting a crosstalk between molecules that are of prime importance for nervous system functions.  相似文献   

9.
Recent evidences show that peroxisome proliferator-activated receptor γ (PPARγ) is involved in the modulation of the amyloid-β (Aβ) cascade causing Alzheimer’s disease (AD) and treatment with PPARγ agonists protects against AD pathology. However, the function of PPARγ steady-state activity in Aβ cascade and AD pathology remains unclear. In this study, an antagonist of PPARγ, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARγ activity in cerebellum. The results show that inhibition of PPARγ significantly induced Aβ levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Aβ. Since cerebellum is spared from significant Aβ accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARγ steady-state activity in protection of cerebellum against AD pathology.  相似文献   

10.
In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APPswe/PS1ΔE9 mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APPswe/PS1ΔE9 transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.  相似文献   

11.
Alzheimer’s disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.  相似文献   

12.
Chronic stress and stress-related disorders, such as major depression (MD), have been shown to increase the risk for developing Alzheimer's disease (AD). Brain-derived neurotrophic factor (BDNF) has been postulated as a neurophysiological link between these illnesses. Our previous research has indicated that exposing the APPswe/PS1dE9 mouse model of AD to prenatal maternal stress (PS) induced a depressive-like phenotype, specifically in female mice. Considering the role of BDNF in depressive-like behavior and its interactions with amyloid-β (Aβ), our aim was to explore whether these mice would also exhibit alterations in soluble Aβ, mature BDNF (mBDNF), proBDNF, and the receptors TrkB and p75(NTR) in comparison to non-stressed animals. Our results demonstrate that female APPswe/PS1dE9 mice have higher levels of hippocampal proBDNF and soluble Aβ as compared to their male littermates. Additionally, a tendency was observed for PS to lower mBDNF protein levels in the hippocampus, but only in female mice, while receptor levels remained unaltered by sex or PS exposure. Given that female mice both have higher proBDNF and Aβ levels, these findings suggest an underlying role for BDNF signaling and Aβ production in the selective vulnerability of women for MD and AD development.  相似文献   

13.
目的 使用剖宫产净化方法建立无菌APPswe/PS1ΔE9(PAP)双转基因小鼠模型并对动物脑内斑块沉积情况进行初步观察,为研究肠道菌群与阿尔茨海默症关系提供新的动物模型。方法 选择阳性PAP雄性杂合子鼠与经产的C57野生型雌鼠1∶2进行交配。怀孕母鼠在超净工作台内行剖宫产手术,用无菌ICR小鼠代乳。术后每个月进行无菌状态检测;PCR方法检测剖宫产所得PAP仔鼠的基因型;免疫组化方法定量检测9月龄PAP小鼠脑内斑块变化情况。结果 实施剖宫产手术12例,获仔鼠66只,剖宫产存活率及离乳存活率分别为95.45%(63/66)和95.24%(60/63),净化后按国标检测无菌状态均为合格。免疫组化结果显示9月龄无菌PAP小鼠海马内斑块较同月龄SPF级动物减少。结论 通过剖宫产净化技术去除了PAP小鼠携带的菌群,9月龄无菌PAP小鼠脑内斑块减少。  相似文献   

14.
Alzheimer’s disease (AD) is defined both by its progressive cognitive deterioration and hallmark increase in neuronal Aβ plaque formation. However, many of the underlying neurobiological facets of this disease are still being elucidated. Previous research has demonstrated that production of neuronal hydrogen sulfide (H2S) is significantly decreased in patients with AD. Moreover, systemic plasma H2S levels are negatively correlated with its severity. However, how a decrease in H2S production might be correlated with either the etiology or pathophysiology of AD remains unknown. To better understand the role of H2S in AD, we examined both levels of H2S and the expression and activity H2S-synthesizing enzyme (cystathionine beta synthase or CBS) in an APP/PS1 transgenic mouse line at 3, 6, 9 and 12 months. After intraperitoneal (i.p.) administration of an H2S donor (NaHS) into APP/PS1 mice, application of exogenous H2S resulted in improved spatial learning and memory acquisition in APP/PS1 mice. H2S administration also led to significant decrease in extracellular levels of Aβ40 and Aβ42, the expression of BACE1 and PS1, and a significant increase of ADAM17 expression. Similarly, an increase in non-amyloidogenic C83 fragment generation and a decrease in amyloidogenic C99 fragment generation were also observed. Thus, NaHS application resulted in a shift from the plaque-forming beta pathway to the non-plaque forming alpha pathway of APP cleavage in 6 and 12 month APP/PS1 mice. These results indicate the importance of H2S to AD severity and that administration of exogenous H2S can promote a non-amyloidogenic processing of APP.  相似文献   

15.
The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ?/? mice.Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.  相似文献   

16.
A hallmark of Alzheimer disease (AD) is the deposition of amyloid β (Aβ) in brain parenchyma and cerebral blood vessels, accompanied by cognitive decline. Previously, we showed that human apolipoprotein A-I (apoA-I) decreases Aβ40 aggregation and toxicity. Here we demonstrate that apoA-I in lipidated or non-lipidated form prevents the formation of high molecular weight aggregates of Aβ42 and decreases Aβ42 toxicity in primary brain cells. To determine the effects of apoA-I on AD phenotype in vivo, we crossed APP/PS1ΔE9 to apoA-IKO mice. Using a Morris water maze, we demonstrate that the deletion of mouse Apoa-I exacerbates memory deficits in APP/PS1ΔE9 mice. Further characterization of APP/PS1ΔE9/apoA-IKO mice showed that apoA-I deficiency did not affect amyloid precursor protein processing, soluble Aβ oligomer levels, Aβ plaque load, or levels of insoluble Aβ in brain parenchyma. To examine the effect of Apoa-I deletion on cerebral amyloid angiopathy, we measured insoluble Aβ isolated from cerebral blood vessels. Our data show that in APP/PS1ΔE9/apoA-IKO mice, insoluble Aβ40 is increased more than 10-fold, and Aβ42 is increased 1.5-fold. The increased levels of deposited amyloid in the vessels of cortices and hippocampi of APP/PS1ΔE9/apoA-IKO mice, measured by X-34 staining, confirmed the results. Finally, we demonstrate that lipidated and non-lipidated apoA-I significantly decreased Aβ toxicity against brain vascular smooth muscle cells. We conclude that lack of apoA-I aggravates the memory deficits in APP/PS1ΔE9 mice in parallel to significantly increased cerebral amyloid angiopathy.  相似文献   

17.
Niemann-Pick type C1 (NPC1) promotes the transport of LDL receptor (LDL-R)-derived cholesterol from late endosomes/lysosomes to other cellular compartments. NPC1-deficient cells showed impaired regulation of liver_X receptor (LXR) and sterol regulatory element-binding protein (SREBP) target genes. We observed that Apoe−/−Npc1−/− mice displayed a marked increase in total plasma cholesterol mainly due to increased VLDL, reflecting decreased clearance. Although nuclear SREBP-2 and Ldlr mRNA levels were increased in Apoe−/−Npc1−/− liver, LDL-R protein levels were decreased in association with marked induction of proprotein convertase subtilisin/kexin type 9 (Pcsk9) and inducible degrader of the LDL-R (Idol), both known to promote proteolytic degradation of LDL-R. While Pcsk9 is known to be an SREBP-2 target, marked upregulation of IDOL in Apoe−/−Npc1−/− liver was unexpected. However, several other LXR target genes also increased in Apoe−/−Npc1−/− liver, suggesting increased synthesis of endogenous LXR ligands secondary to activation of sterol biosynthesis. In conclusion, we demonstrate that NPC1 deficiency has a major impact on VLDL metabolism in Apoe−/− mice through modulation of hepatic LDL-R protein levels. In contrast to modest induction of hepatic IDOL with synthetic LXR ligands, a striking upregulation of IDOL in Apoe−/−Npc1−/− mice could indicate a role of endogenous LXR ligands in regulation of hepatic IDOL.  相似文献   

18.
(AD). Although physical exercise and AD have received attention in the scientific literature, the mechanism through which treadmill exercise may impact the brain insulin signaling of AD has not been elucidated. This study aimed to evaluate the neuroprotective effects of treadmill exercise on apoptotic factors (Bcl-2/Bax ratio, caspase-3), HSP70, COX-2, BDNF and PI3-K/Akt signaling pathway in the cortex of NSE/hPS2m transgenic mice model of AD. Treadmill exercise ameliorated cognitive function in water maze test and significantly increased the level of Bcl-2/Bax ratio and HSP-70 in Tg-exe group compared to Tg-con group; on the other hand, it significantly decreased the expression of caspase-3 and COX-2 in Tg-exe group compared to Tg-con group. In addition, treadmill exercise significantly increased the expression of BDNF and PI3K/Akt in Tg-exe group compared to Tg-con group. Consequently, treadmill exercise improves cognitive function possibly via activating neurotrophic factor, BDNF and PI3k/Akt signaling pathway, and Aβ-induced neuronal cell death in the cortex of Tg mice was markedly suppressed following treadmill exercise. These results suggest that treadmill exercise may be beneficial in preventing or treating Alzheimer’s disease.  相似文献   

19.
20.
Hydrogen sulfide (H(2)S) is now identified as a new neuromodulator. Increasing evidence suggest that H(2)S may play an important role in the progression of Alzheimer's disease (AD). The aim of the present study is to investigate the effects of H(2)S on beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) expression and amyloid beta (Aβ) secretion in PC12 cells. The levels of BACE-1 mRNA were measured by quantitative polymerase chain reaction analysis. BACE-1 protein levels were assessed by Western blot. Cellular culture medium levels of Aβ1-42 were analyzed by ELISA. We found that sodium hydrosulfide (NaHS), a H(2)S donor, decreased BACE-1 mRNA and protein levels and Aβ1-42 release. Furthermore, NaHS promoted the phosphorylation of Akt and ERK but not JNK or p38 MAPK. However, the effects of NaHS on BACE-1 expression and Aβ1-42 secretion were abolished by inhibitors of phosphatidylinositol 3-kinase (PI3-K), but not of mitogen-activated protein kinase kinases (MEK). Our data indicate that H(2)S reduces BACE-1 expression in PC12 cells via activation of PI3-K/Akt signaling pathways. H(2)S releasing drugs may have therapeutic potential in AD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号