首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel triple cell neurovascular unit (NVU) model co-culturing with neurons, brain microvascular endothelial cells (BMECs) and astrocytes was established in this study for investigating the cerebral diseases and screening the candidates of therapeutic drug. We have first performed the cell identification and morphological characterization, analyzed the specific protein expression and determined the blood-brain barrier (BBB) function of the co-culture model under normal condition. Then, we further determined the BBB function, inflammation, cell injury and the variation of neuroprotective factor in this model after anoxia-reoxygenation. The results suggest that this model exhibited a better BBB function and significantly increased expression of P-glycoprotein (Pg-P) and ZO-1 compared with BMECs only or co-culture with astrocytes or neurons. After anoxia-reoxygenation, the pathological changes of this model were basically resemblance to the pathological changes of brain cells and BBB in vivo. And nimodipine, an antagonist of calcium, could reverse those changes as well. According to our observations, we deduce that this triple cell co-culture model exhibits the basic structure, function and cell-cell interaction of NVU, which may offer a more proper in vitro system of NVU for the further investigation of cerebral diseases and drug screening.  相似文献   

2.
Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. Further, in vitro study of the cells of the NVU was performed to locate the source of this increased perlecan-LG3. Neurons, astrocytes, brain endothelial cells and pericytes were exposed to OGD/reperfusion and IL-1α/β. It was observed that neurons and pericytes showed increased levels of LG3 during OGD in their culture media. During in vitro reperfusion, neurons, astrocytes and pericytes showed elevated levels of LG3, but only after exposure to brief durations of OGD. IL-1α and IL-1β treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1β decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.  相似文献   

3.

Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood–brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.

  相似文献   

4.
Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells isolated from many adult tissues. Previous studies reported that MSCs can differentiate to both mesodermal and neural lineages by a phenomenon referred to as ‘‘dedifferentiation’’ or ‘‘transdifferentiation’’. However, since MSCs have only been defined in vitro, much of their development in vivo is still unknown. Here, we prospectively identified MSCs in the bone marrow from adult transgenic mice encoding neural crest-specific P0-Cre/Floxed-EGFP and Wnt1-Cre/Floxed-EGFP. EGFP-positive MSCs formed spheres that expressed neural crest stem cell genes and differentiated into neurons, glial cells, and myofibroblasts. Interestingly, we observed MSCs both in the GFP+ and GFP fraction and found that there were no significant differences in the in vitro characteristics between these two populations. Our results suggest that MSCs in adult bone marrow have at least two developmental origins, one of which is the neural crest.  相似文献   

5.

Background

Accumulation of glutamate in ischaemic CNS is thought to amplify neuronal death during a stroke. Exposure of neurons to toxic glutamate concentrations causes an initial transient increase in [Ca2+]c followed by a delayed increase commonly termed delayed [Ca2+]c deregulation (DCD).

Methods

We have used fluorescence imaging techniques to explore differences in glutamate-induced DCD in rat hippocampal neurons after different periods of time in culture (days in vitro; DIV).

Results

The amplitude of both the initial [Ca2+]c signal and the number of cells showing DCD in response to glutamate increased with the duration of culture. The capacity of mitochondria to accumulate calcium in permeabilised neurons decreased with time in culture, although mitochondrial membrane potential at rest did not change. The rate of ATP consumption, measured as an increase in [Mg2+]c following inhibition of ATP synthesis, was lower in ‘young’ neurons. The sensitivity of ‘young’ neurons to glutamate-induced DCD approximated to that of ‘old’ neurons when mitochondrial function was impaired using either FCCP or oligomycin. Further, following such treatment, cells showed a DCD-like response to increased [Ca2+]c induced by KCl induced depolarisation which was never otherwise seen.

General significance

Thus, changes in cellular bioenergetics dictate the onset of DCD in response to glutamate.  相似文献   

6.
Memory studies in biological systems distinguish three informational processes that are generally sequential—production/acquisition, storage, and retrieval/use. Identification of DNA as a storage form for hereditary information accelerated progress in that field. Assuming the path of successful elucidation in one memory field (heredity) to be heuristic for elucidation in another (brain), then progress in neuroscience should accelerate when a storage form is identified. In the 19th century Ewald Hering and Samuel Butler held that heredity and brain memory both involved the storage of information and that the two forms of storage were the same. Hering specified storage as ‘molecular vibrations’ but, while making a fuller case, Butler was less committal. In the 20th century, the ablation studies of Karl Lashley failed to identify unique sites for storage of brain information, and Donald Hebb's ‘synaptic plasticity’ hypothesis of distributed storage over a neuronal network won favor. In the 21st century this has come under attack, and the idea that brain and hereditary information are stored as DNA is advocated. Thus, albeit without attribution, Butler's idea is reinstated. Yet, while the case is still open, the synaptic plasticity and DNA hypotheses have problems. Two broad alternatives remain on the table. Long term memory is located: (1) in the brain, either in some other macromolecular form (e.g. protein, lipid) or in some sub-molecular form (e.g. quantum computing and ‘brain as holograph’ hypotheses) or (2) outside the brain. The suggestion of the medieval physician Avicenna that the brain ‘cupboard’ is bare—i.e. the brain is a perceptual, not storage, organ—is consistent with a mysterious ‘universe as holograph’ model. Understanding how Butler came to contribute could be heuristic for future progress in a field fraught with ‘fractionation and disunity’.  相似文献   

7.
Actuarial senescence is characterized by an increase in mortality rate with increasing chronological age. The reliability theory of senescence proposes that organisms’ vital functions can be modelled as a suite of damageable, irreplaceable elements (typically genes or their products) that protect their bearer from condition-dependent death so long as at least one of the elements remains intact. Current incarnations of the reliability theory of senescence are continuous-time models with no explicit evolutionary component. Here, we use elementary probability theory and evolutionary dynamics analysis to derive a discrete-time version of the reliability theory of senescence. We include three variations on this theme: the ‘Series’ model in which damage to any of n elements results in death, the ‘Parallel’ model, in which damage accumulates in random order and damage to all n elements results in death, and the ‘Cascade’ (multi-stage) model, which is like the Parallel model, except the irreparable damage necessarily follows a strict sequence. For simplicity, we refer to the state of having multiple elements as ‘redundancy’, but this does not imply that the elements are necessarily identical. We show that redundancy leads to actuarial senescence in the Parallel and Cascade models but not in the Series model. We further demonstrate that in the Parallel and Cascade models, lifetime reproductive output (a potential proxy for fitness in populations with discrete generations) is a positive but decelerating function of redundancy. The positive nature of the fitness function leads to the prediction that redundancy and senescence should evolve from non-redundant, non-senescing ancestral populations; however, the deceleration of the fitness function leads to the prediction that this evolution towards increased redundancy will eventually be limited by mutation-selection balance. Using evolutionary dynamics analysis involving the discrete-generation quasispecies equation, we confirm these two predictions. Finally, we show that a population's equilibrium redundancy is sensitive to the environmental conditions that prevailed during its evolution, such as the rate of extrinsic mortality.  相似文献   

8.
Bursting oscillations are common in neurons and endocrine cells. One type of bursting model with two slow variables has been called ‘phantom bursting’ since the burst period is a blend of the time constants of the slow variables. A phantom bursting model can produce bursting with a wide range of periods: fast (short period), medium, and slow (long period). We describe a measure, which we call the ‘dominance factor’, of the relative contributions of the two slow variables to the bursting produced by a simple phantom bursting model. Using this tool, we demonstrate how the control of different phases of the burst can be shifted from one slow variable to another by changing a model parameter. We then show that the dominance curves obtained as a parameter is varied can be useful in making predictions about the resetting properties of the model cells. Finally, we demonstrate two mechanisms by which phase-independent resetting of a burst can be achieved, as has been shown to occur in the electrical activity of pancreatic islets.  相似文献   

9.
The neurovascular unit (NVU) can be conceptualized as a functional entity consisting of neurons, astrocytes, pericytes, and endothelial and smooth muscle cells that operate in concert to affect blood flow to a very circumscribed area. Although we are currently in a “golden era” of bioengineering, there are, as yet, no living NVUs-on-a-chip modules available and the development of a neural chip that would mimic NVUs is a seemingly lofty goal. The sexually dimorphic nucleus of the preoptic area (SDN-POA) is a tiny brain structure (between 0.001~0.007 mm3 in rats) with an assessable biological function (i.e., male sexual behavior). The present effort was undertaken to determine whether there are identifiable NVUs in the SDN-POA by assessing its vasculature relative to its known neural components. First, a thorough and systematic review of thousands of histologic and immunofluorescent images from 201 weanling and adult rats was undertaken to define the characteristics of the vessels supplying the SDN-POA: its primary supply artery/arteriole and capillaries are physically inseparable from their neural elements. A subsequent immunofluorescent study targeting α-smooth muscle actin confirmed the identity of an artery/arteriole supplying the SDN-POA. In reality, the predominant components of the SDN-POA are calbindin D28k-positive neurons that are comingled with tyrosine hydroxylase-positive projections. Finally, a schematic of an SDN-POA NVU is proposed as a working model of the basic building block of the CNS. Such modules could serve the study of neurovascular mechanisms and potentially inform the development of next generation bioengineered neural transplants, i.e., the construct of an NVU neural chip.  相似文献   

10.
The process of initiating a voluntary muscular movement evidently involves a focusing of diffuse brain activity onto a highly specific location in the primary motor cortex. Even the very simple stereotypic movements used to study the ‘contingent negative variation’ and the ‘readiness potential’ begin with EEG indicative of widely distributed brain activity. In natural settings the involvement of diffuse cortical networks is undoubtedly even more important. Eventually, however, activity must coalesce onto specific neurons for the intended movement to ensue. Here we examine that focusing process from a mathematical point of view. Using a digital simulation, we solve the global equations for cortical dynamics and model the flow from diffuse onset to localized spike. From this perspective the interplay between global and local effects is seen as a necessary consequence of a basic cortical architecture which supports wave propagation. Watching the process evolve over time allows us to estimate some characteristic amplitudes and delays.  相似文献   

11.
12.
The amplification of cyclic nucleotide second messenger signals within neurons is controlled by phosphodiesterases which are responsible for their degradation. Calmodulin-dependent phosphodiesterase (CaMPDE) is an abundant enzyme in brain which carries out this function. For the first time, we have localized CaMPDE in the normal human brain at various ages, using a monoclonal antibody designated A6. This antibody was generated using standard techniques, purified, and applied to tissue sections. Autopsy specimens of human brain with no neuropathological abnormalities were selected representing a range of pre- and postnatal ages. Sections of various brain regions were evaluated for immunoreactivity, graded as nil, equivocal, or definite. We demonstrated definite CaMPDE immunohistochemical staining in neocortex, especially in neurons in layers 2 and 5. There was definite neuronal immunoreactivity in the hippocampus, and in the subiculum. The striatum had definite patchy neuronal staining. Definite terminal staining in the globus pallidus externa and substantia nigra pars reticulata outlined resident neurons, interpreted as axonal terminal staining. Cerebellar Purkinje cells showed definite immunoreactivity. In the developing brain, definite immunohistochemical staining was seen in the cerebellar external granular layer. The expression of CaMPDE in specific subsets of neurons suggests they may correlate with cells having dopaminergic innervation and/or high levels of neuronal integration.  相似文献   

13.
为了观察脑缺血再灌注(cerebral ischemia reperfusion, CIR)大鼠缺血灶周边脑组织不同时间点神经血管单元(neurovascular unit, NVU)超微结构变化,研究三七总皂苷(Panax notoginseng saponins, PNS)对脑缺血再灌注大鼠脑组织NVU超微结构的影响,本研究采用改良Zea Longa法制作局灶性大脑中动脉闭塞(MCAO)模型,缺血2 h后再灌注;采用Longa法评分标准检测各组大鼠术后4 h神经功能评分,随之各组进行干预,分别在缺血再灌注后24 h、72 h、7 d、3周进行神经功能评分和透射电镜下观察各组大鼠缺血灶周边脑组织的NVU超微结构变化。研究结果表明,干预前即术后4 h治疗组和对照组神经功能评分比较无明显差异;PNS干预后治疗组大鼠神经功能评分逐渐改善,缺血再灌注后24 h与对照组比较,差异无统计学意义(p>0.05),再灌注72 h、7 d、3周的大鼠神经缺损评分与同时间点对照组相比差异具有统计学意义(p<0.05)。电镜观察发现再灌注24 h、72 h、7 d、3周治疗组大鼠脑组织NVU超微结构的病理形态损伤均较同时间点对照组明显减轻。本研究结论认为,PNS通过整合促进脑缺血后NVU的神经元、胶质细胞和微血管的修复,改善神经功能缺损症状,对脑缺血具有保护作用。  相似文献   

14.
The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.  相似文献   

15.
16.
Myeloid leukemic cells can differentiate into leukemia-derived dendritic cells (DCleu), presenting known/unknown leukemic-antigens. Induced anti-leukemic T-cell-responses are variable. To further elicit DC/DCleu-induced T-cell-response-patterns we performed (functional)flow-cytometry/fluorolysis-assays before/after mixed lymphocyte cultures (MLC) of matched (allogeneic) donor-T-cells (n = 6), T-cells prepared at relapse after stem cell transplantation (n = 4) or (autologous) patients’-T-cells (n = 7) with blast-containing-mononuclear-cells (‘MNC’) or DCleu-containing DC (‘DC’). Compared to ‘MNC’ ‘DC’ were better mediators of anti-leukaemic T-cell-activity, although not in every case effective. We could define cut-off proportions of mature DC, DCleu, proliferating, CD4+, CD8+ and non-naive T-cells after ‘MNC’- or ‘DC’-stimulation, that were predictive for an anti-leukemic-activity of stimulated T-cells as well as a response to immunotherapy. Interestingly especially ratios >1 of CD4:CD8 or CD45RO:CD45RA T-cells were predictive for anti-leukemic function after DC-stimulation.In summary the composition and quality of DC and T-cells after a MLC-stimulating-phase is predictive for a successful ex-vivo and in-vivo anti-leukemic response, especially with respect to proportions of proliferating, CD4+ and CD45RO+ T-cells. Successful cytotoxicity and the development of a T-cell-memory after ‘DC’-stimulation could be predictive for the clinical course of the disease and may pave the way to develop adoptive immunotherapy, especially for patients at relapse after SCT.  相似文献   

17.
There is evidence that active, pre-emergence maternal brood care in amphipod crustaceans may be associated with ‘harsh’ environmental conditions. We examined, in the rockpool amphipod Apherusa jurinei, behavioural activities that may function as a form of active brood care. Only ovigerous females showed ‘curl’ and ‘stretch’ activities, with consequent flushing of the brood pouch and cycling of the eggs therein. There was a significant decline in these activities as embryonic development advanced and brood care almost ceased when well-developed embryos showed a heart pulse and self-ventilation. We propose that this pattern of brood care reflects changes in the physiological requirements of embryos as they develop within the egg membrane. In addition, ovigerous females showed significantly higher levels of brood care under lowered oxygen conditions. They achieved this by increasing the average duration of the ‘stretch’ component, with other brood care components remaining constant. Thus, developmental and environmental cues alter the components of active brood care in distinct ways. Experimental removal showed that the physical presence of eggs in the brood pouch is important in controlling the expression of brood care activities. However, females with all of their eggs removed continued to brood at low levels, suggesting that a maternal state also controls brood care. The sophisticated expression of active maternal brood care in amphipods under ‘harsh’ environmental conditions such as rockpools has implications both for individual reproductive success and the distribution and abundance of brooding versus nonbrooding species. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

18.
To determine the neuronal function of genes in vivo, the neuron-specific deletion of a target gene in animals is required. Tau, a microtubule-associated protein, is expressed abundantly in neurons but scarcely in glias and other tissues. Therefore, to generate mice that express Cre recombinase in neurons, we inserted Cre recombinase into the tau locus. By crossing these tau-Cre mice with ROSA26 lacZ reporter mice, we observed Cre recombinase activity in the neurons from most of the central nervous system, but not in glias nor in non-neuronal tissues. This neuronal-specific activity appeared during embryogenesis. We further crossed tau-Cre mice with rab8 ‘floxed’ mice, and showed that the recombination was nearly complete in the brain, but incomplete or non-detectable in other tissues. Thus, tau-Cre knockin mouse is a useful tool for studying the neuronal function of a gene in vivo.  相似文献   

19.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   

20.
He J  Chen F  Chen S  Lv G  Deng Y  Fang W  Liu Z  Guan Z  He C 《Journal of plant physiology》2011,168(7):687-693
Artificial aphid infestation experiments on the three chrysanthemum cultivars ‘Keiun’, ‘Han6’ and ‘Jinba’ showed that the three cultivars vary markedly in their resistance. Of the three cultivars, the most resistant (‘Keiun’) produced the longest, highest and densest trichomes, the largest and fullest gland cells, and the most wax on the lower leaf epidermis. Superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), polyphenol oxidase activity (EC 1.14.18.1) and phenylalanine ammonia lyase (EC 4.3.1.5) were enhanced by aphid herbivory. In the two more resistant cultivars (‘Keiun’ and ‘Han6’), the activity of superoxide dismutase and ascorbate peroxidase enzymes rapidly increased following infestation, and their levels remained high from seventy-two to one hundred and sixty-eight hours after inoculation. We suggest that these two antioxidant enzymes contribute to aphid resistance of these chrysanthemum cultivars. All three cultivars showed quick responses to aphid infestation by increasing polyphenol oxidase and phenylalanine ammonia lyase activities during the early period after inoculation. Activities of these two defense enzymes were higher in the two resistant cultivars after 72 h after inoculation, suggesting involvement of these two enzymes in aphid resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号