首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The characteristic pathological change of Alzheimer's disease (AD) include deposits of β-amyloid protein (Aβ) in brain, neurofibrillary tangles (NFTs), as well as a few neuronal loss. Evidence shows that Aβ causes calcium influx and induces the cleavage of p35 into p25. Furthermore, the binding of p25 to cyclin-dependent kinase 5 (Cdk5) constitutively activates Cdk5. The p25/Cdk5 complex then hyperphosphorylates tau. Tanshinone IIA (tanIIA), a natural product extracted from Chinese herbal medicine Salvia miltiorrhiza BUNGE, has been reported to exert antioxidative activity. However, its neuroprotective activity remains unclear. The present study determined whether tanIIA protects neurons against Aβ(25-35)-induced cytotoxicity and detected the association of this protective effect with calpain and the p35/Cdk5 pathway. The results showed that tanIIA protected neurons against the neurotoxicity of Aβ(25-35), increased the viability of neurons, decreased expression of phosphorylated tau in neurons induced by Aβ(25-35), improved the impairment of the cell ultrastructure (such as nuclear condensation and fragmentation, and neurofibril collapse). Further more, we found that tanIIA maintained the normal expression of p35 on peripheral membranes, and decreased p25 expression in the cytoplasm. TanIIA also inhibited the translocation of Cdk5 from the nucleus into the cytoplasm of primary neurons induced by Aβ(25-35). These data suggested that tanIIA possessed neuroprotective action and the protection may involve in calpain and the p35/Cdk5 pathway.  相似文献   

3.
4.
Classical Hodgkin lymphoma (cHL) is now recognized as a B-cell-derived lymphoma which is characterized by only about 1% malignant pathognomonic Hodgkin and Reed-Sternberg (HRS) cells and an abundant infiltrate of reactive bystander cells. HRS cells are unique with respect to their lost B-cell-specific gene expression pattern and recurrent genetic lesions. Aberrant activity of Notch signaling, a highly conserved developmental pathway, acts as a negative regulator of the B cell program in HRS cells and thereby contributes to their reprogramming. Another striking feature and the major pathogenetic mechanism in HRS cells is constitutive NF-κB activation. A number of aberrations that contribute to canonical NF-κB activity in HRS cells have been described such as genetic lesions, deregulated receptor signaling and Epstein-Barr virus (EBV) infection. The importance of Notch and NF-κB signaling for cHL pathogenesis, their potential cross-talk and implications for future therapeutic applications are being discussed.  相似文献   

5.
It has been previously shown that some flavonoids inhibit NF-κB; however, the structure-activity relationships between chalcone, flavanone, flavone, and isoflavone derivatives and their TNFα induced NF-κB inhibitory effects on HCT116 human colon cancer cells have not yet been reported. Therefore, in this study, the effects of flavonoid structure on inhibition of NF-κB were investigated. Based on the combined results of this study, the structure of the flavonoids was shown to affect NF-κB activation.  相似文献   

6.
We demonstrate that activation of nuclear factor κB (NF-κB) in neurons is neuroprotective in response to kainic acid (KA)-induced excitotoxicity. Combination of Western blotting, immunocytochemistry, and electrophoresis mobility shift assay showed that KA exposure induced a fast but transient nuclear translocation of the NF-κB p65 subunit and increased DNA-binding activity of NF-κB in primary cultured cortical neurons. The transient NF-κB activity was associated with upregulation of antiapoptotic Bcl-xL and XIAP gene products revealed by real-time PCR. Knockdown of p65 decreased neuronal viability and antiapoptotic gene expression. In addition, we showed that KA-stimulated DNA-binding activity of NF-κB was associated with reactive oxygen species and calcium signals, using AMPA/KA receptor antagonist, calcium chelator, and antioxidant. These results suggest that the fast and transient activation of NF-κB initiated by calcium signals is one of the important proximal events in response to KA-induced excitotoxicity, which has neuroprotective effect against KA-induced apoptosis.  相似文献   

7.
《Cellular signalling》2014,26(4):683-690
Tumour necrosis factor (p55 or p60) receptor (TNFR) 1 is the major receptor that activates pro-inflammatory signalling and induces gene expression in response to TNF. Consensus is lacking for the function of (p75 or p80) TNFR2 but experiments in mice have suggested neuro-, cardio- and osteo-protective and anti-inflammatory roles. It has been shown in various cell types to be specifically required for the induction of TNFR-associated factor-2 (TRAF2) degradation and activation of the alternative nuclear factor (NF)-kappaB pathway, and to contribute to the activation of mitogen-activated protein kinases (MAPK) and the classical NF-kappaB pathway. We have investigated the signalling functions of TNFR2 in primary human and murine macrophages. We find that in these cells TNF induces TRAF2 degradation, and this is blocked in TNFR2−/− macrophages. TRAF2 has been previously reported to be required for TNF-induced activation of p38 MAPK. However, TRAF2 degradation does not inhibit TNF-induced tolerance of p38 MAPK activation. Neither TNF, nor lipopolysaccharide treatment, induced activation of the alternative NF-kappaB pathway in macrophages. Activation by TNF of the p38 MAPK and NF-kappaB pathways was blocked in TNFR1−/− macrophages. In contrast, although TNFR2−/− macrophages displayed robust p38 MAPK activation and IkappaBα degradation at high concentrations of TNF, at lower doses the concentration dependence of signalling was weakened by an order of magnitude. Our results suggest that, in addition to inducing TRAF2 protein degradation, TNFR2 also plays a crucial auxiliary role to TNFR1 in sensitising macrophages for the ligand-induced activation of the p38 MAPK and classical NF-kappaB pro-inflammatory signalling pathways.  相似文献   

8.

Background  

Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-κB p65/RelA and blocks the formation of functional IL-1β processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because POP2 knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether POP2 is common in the mammalian lineage.  相似文献   

9.
Experiments in vitro on hippocampal slices of mouse have shown that solutions prepared from polymorphic modifications α- and γ-glycine have different effect on the aberrant activity of neurons. In the presence of α-glycine the excitability of these neurons decreased more slowly, prolonging its modulating effect on NMDA type glutamate receptors. This effect agrees with higher biological activity of α-polymorphic modifications (as compared with that of the α-form) that previously observed with respect to behavior of mice from the line with genetic diathesis to catalepsy, which were used as a biological model for investigation of some pathological behavior forms.  相似文献   

10.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

11.
NF-κB in the Survival and Plasticity of Neurons   总被引:6,自引:0,他引:6  
  相似文献   

12.
To determine the impact of B cell leukemia/lymphoma (BCL) 10 on the phosphorylation of crucial mediators in NF-κB-mediated inflammatory pathways, human colonic epithelial cells were exposed to carrageenan (CGN), a sulfated polysaccharide commonly used as a food additive and known to induce NF-κB nuclear translocation by both canonical and noncanonical pathways. Phosphorylations of intermediates in inflammatory cascades, including NF-κB-inducing kinase (NIK) at Thr(559), transforming growth factor-β-activating kinase (TAK) 1 at Thr(184), Thr(187), and Ser(192), and inhibitory factor κBα (IκBα) at Ser(32), were examined following mutation of BCL10 at Ser(138) and at Ser(218). Specific phosphoantibodies were used for detection by enzyme-linked immunosorbent assay, immunoblot, and confocal microscopy of differences in phosphorylation following transfection by mutated BCL10. Both mutations demonstrated dominant-negative effects, with inhibition of phospho(Ser(32))-IκBα to less than control levels. Both of the BCL10 mutations reduced the CGN-induced increases in nuclear RelA and p50, but only the Ser(138) mutation inhibited the CGN-induced increases in nuclear RelB and p52 and in NIK Thr(559) phosphorylation. Hence, the phosphorylation of BCL10 Ser(138), but not Ser(218), emerged as a critical event in activation of the noncanonical pathway of NF-κB activation. Either BCL10 Ser(138) or Ser(218) mutation inhibited the phosphorylation of TAK1 at Thr(184) and at Thr(187), but not at Ser(192). These findings indicate that BCL10 phosphorylations act upstream of phosphorylations of NIK, TAK1, and IκBα and differentially affect the canonical and noncanonical pathways of NF-κB activation.  相似文献   

13.
Aucubin is an iridoid glycoside with demonstrable hepatoprotective and anti-osteoporotic effects. Herein, using microglial cells and lipopolysaccharide (LPS) to induce inflammatory responses, we studied the signaling pathways involved in the anti-inflammatory action of aucubin and their influence on the expression of several genes known to be involved in inflammation. Aucubin inhibited LPS-stimulated pro-inflammatory responses by suppressing the production of nitric oxide and prostaglandin E2. Furthermore, aucubin inhibited inducible nitric oxide synthase and cyclooxygenase-2 at both the protein and mRNA levels. In addition, aucubin inhibited pro-inflammatory cytokine production in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that aucubin inhibited the LPS-induced activation of nuclear factor-kappa B (NF-κB) translocation and phosphorylation of phosphatidylinositol 3-kinases (PI3K)/Akt as well as of mitogen-activated protein kinases (MAPKs), which are upstream molecules responsible for controlling inflammatory reactions. These results suggest that aucubin may exert anti-neuroinflammatory responses by suppressing the LPS-induced expression of pro-inflammatory mediators by blocking the activation of NF-κB, PI3K/Akt, and MAPK signaling pathways in microglial cells.  相似文献   

14.
Herpes simplex virus type 2 (HSV-2) is one of the most common sexually transmitted pathogens worldwide. The host immune response induced by viral infection is cell-type specific. Little is known about the innate immune response to this virus in its natural host cells. In this study, we established an in vitro HSV-2 infection model with human cervical epithelial (HCE) cells. The viral infection was sufficient to induce expression of Toll-like receptors (TLRs), and Western blot and reporter assays suggest that HSV-2 infection leads to dramatic activation of the NF-κB signaling pathway. More importantly, our data provide direct evidence that the activation of NF-κB is required for the production of both IL-6 and IFN-β induced by HSV-2 in HCE cells. Taken together, our results suggest the potential contributions of TLRs and a critical role of NF-κB in the innate immune response to HSV-2 in HCE cells.  相似文献   

15.
Inflammation is often accompanied by hypoxia. However, crosstalk between signalling pathways activated by inflammation and signalling events that control adaptive response to hypoxia is not fully understood. Here we show that exposure to tumour necrosis factor-α (TNF-α) activates expression of the inhibitory PAS domain protein (IPAS) to suppress the hypoxic response caused by hypoxia-inducible factor (HIF)-1 and HIF-2 in rat pheochromocytoma PC12 cells but not in human hepatoma Hep3B cells. This induction of IPAS was dependent on the nuclear factor-κB (NF-κB) pathway and attenuated hypoxic induction of HIF-1 target genes such as tyrosine hydroxylase (TH) and vascular endothelial growth factor (VEGF). HIF-dependent reporter activity in hypoxia was also decreased following TNF-α treatment. Knockdown of IPAS mRNA by small interfering RNA (siRNA) restored the TNF-α-suppressed hypoxic response. These results indicate that TNF-α is a cell-type specific suppressor of HIFs and suggest a novel crosstalk between stimulation by inflammatory mediators and HIF-dependent hypoxic response.  相似文献   

16.
Tumor necrosis factor alpha (TNFα) activates the nuclear factor-kappaB (NF-κB) pathway in various cell types, leading to expression of cell survival and inflammatory proteins. One mechanism of cell survival brought about by NF-κB is the inhibition of Activator Protein-1 (AP-1), which when activated, could lead to cell death. However, TNFα can also induce the AP-1 pathway, and the mechanisms by which these two pathways are regulated in response to TNFα are poorly understood. We proposed that Inhibitor of κB Kinase gamma (IKKγ) (which is also known as NF-κB essential modulator, NEMO) plays a key role in integrating and coordinating these two pathways. Our results showed that IKKγ activates the AP-1 pathway, via a mechanism that is dependent on the first leucine zipper (LZ) domain of IKKγ, by interacting with two proteins of the AP-1 complex, c-Jun and c-Fos, and changing the phosphorylation status of c-Jun. Even though IKKγ is required for the activation of NF-κB, we found that it reduced the activity of NF-κB when it was overexpressed. In summary, we demonstrated that transfected IKKγ, while inhibiting the NF-κB pathway, directly interacts with the AP-1 proteins and activates the AP-1 pathway independent of its effects on NF-κB. Our results indicate that IKKγ regulates TNFα signaling by coordinating cell responses mediated by the AP-1 and NF-κB pathways. A. S. Shifera and J. M. Friedman contributed equally to this article. Marshall S. Horwitz—Deceased: This article is dedicated to his loving memory.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents against a variety of cancers owing to their capability in blocking the tumor development by cellular proliferation, angiogenesis and by promoting apoptosis. The present study further explored the comparative role of a traditional NSAID, indomethacin and a newly developed coxib, etoricoxib against 9,10-dimethylbenz(a)anthracene (DMBA)-induced lung carcinogenesis in rats. Morphological and histological analysis revealed the occurrence of tumors and lesions along with constricted alveolar spaces in the DMBA treated animals which were largely corrected both by indomethacin and etoricoxib. COX-1 was found to be uniformly expressed in all the groups while COX-2 levels were raised prominently in the DMBA treated animals. Proliferation, as studied by PCNA expression was found to be markedly increased in the DMBA group as compared to the others. Increased NF-κB expression in the DMBA group was found to correct with the co-administration of NSAIDs. Also, fluorescent co-staining of the isolated lung cells revealed a significantly decreased apoptosis and altered mitochondrial membrane potential. In conclusion, these parameters indicate to the chemopreventive action of the two NSAIDs studied in lung cancer and as their mechanism of action suggests, can be achievable both by COX-dependent and COX-independent pathways.  相似文献   

18.
A two-wave technique of calciometry with the use of a fluorescence dye, fura-2/AM, was applied for examination of the effect of a protein, β-amyloid (the main component of senile plaques in Alzheimer’s disease), on calcium homeostasis in cultured neurons of the rat hippocampus; β-amyloid was added to the culture medium. In most neurons, the effect of β-amyloid appeared as a more than twofold increase in the basic calcium concentration, as compared with the control (153.4 ± 11.5 and 71.7 ± 5.4 nM, respectively; P < 0.05). The characteristics of calcium transients induced by application of hyperpotassium solution also changed; the amplitude of these transients decreased, and the duration of a part corresponding to calcium release from the cell (rundown of the transient) increased. The mean amplitude of calcium transients under control conditions was 447.5 ± 20.1 nM, while after incubation in the presence of β-amyloid this index dropped to 278.4 ± 22.6 nM. Under control conditions, the decline phase of calcium transients lasted, on average, 100 ± 6 sec, while after incubation of hippocampal cell cultures in the presence of β-amyloid this phase lasted 250 ± 10 sec. Therefore, an excess of β-amyloid influences significantly calcium homeostasis in the nerve cells by disturbing functions of the calcium-controlling systems, such as voltage-operated calcium channels of the plasma membrane and calcium stores of the mitochondria and endoplasmic reticulum. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 9–12, January–February, 2008.  相似文献   

19.
The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases. Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation, where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage. Thus, increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders, raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases. However, ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism, and in some cases trigger the development of inflammation and disease. These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues. This beneficial function of NF-κB has been predominantly observed in epithelial cells, indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues. It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage, but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis, triggering inflammation and disease. Here, we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling, focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号