首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) diffuses as short‐lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at the neuromuscular junction (NMJ) of Drosophila melanogaster larvae. Application of NO donors induced cGMP immunoreactivity in the presynaptic terminals but not the postsynaptic muscle fibers at an identified NMJ. The NO‐induced cGMP immunoreactivity was sensitive to a specific inhibitor (ODQ) of the sGC. Since presynaptic terminals which were surgically isolated from the central nervous system are capable of synthesizing cGMP, we suggest that an NO‐sensitive guanylyl cyclase is present in the terminal arborizations. Using a fluorescent dye that is known to stain recycling synaptic vesicles, we demonstrate that NO donors and membrane permeant cGMP analogues cause vesicle release at the NMJ. Moreover, the NO‐induced release could be blocked by the specific inhibitor of the sGC. A destaining of synaptic terminals after NO exposure in Ca2+‐free solution in the presence of cobalt chloride as a channel blocker suggested that NO stimulates Ca2+‐independent vesicle release at the NMJ. The combined immunocytochemical and exocytosis imaging experiments imply the involvement of cGMP and NO in the regulation of vesicle release at the NMJ of Drosophila larvae. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 337–346, 1999  相似文献   

2.
The functional effect of activating Ca2+-permeable neuronal nicotinic acetylcholine receptors (nAChRs) on vesicle secretion was studied in PC12 cells. Single cells were patch-clamped in the whole-cell configuration and stimulated with either brief pulses of nicotine to activate the Ca2+-permeable nAChRs or with voltage steps to activate voltage-dependent Ca2+ channels. Membrane capacitance was used as a measure of vesicle secretion. Activation of nAChRs by nicotine application to cells voltage clamped at −80 mV evoked secretion. This secretion was completely abolished by nicotinic antagonists. When the cells were voltage clamped at +20 mV in the presence of Cd2+ to block voltage-activated Ca2+ channels, nicotine elicited a small amount of secretion. Most interestingly, when the nAChRs were activated coincidentally with voltage-dependent Ca2+ channels, secretion was augmented approximately twofold over the secretion elicited with voltage-dependent Ca2+ channels alone. Our data suggest that Ca2+ influx via nAChRs affects Ca2+-dependent cellular functions, including vesicle secretion. In addition to the secretion evoked by nAChR activation at hyperpolarized potentials, we demonstrate that even at depolarized potentials, nAChRs provide an important Ca2+ entry pathway underlying Ca2+-dependent cellular processes such as exocytosis.  相似文献   

3.
Most chemical neurotransmission occurs through Ca2+-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca2+ sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca2+ dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca2+ for the assembly of soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H+-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca2+–Calmodulin (CaM)-dependent manner. Ca2+–CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca2+-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca2+–CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.  相似文献   

4.
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon‐specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca2+‐buffer EGTA, suggesting that synaptic ribbons mediate nano‐domain coupling of Ca2+ channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano‐domains that position release‐ready synaptic vesicles adjacent to Ca2+ channels.  相似文献   

5.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

6.
At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating.  相似文献   

7.
At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a ''graphic modeling'' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating.  相似文献   

8.
9.
Voltage-gated calcium channels (VGCC) are involved in a large variety of cellular Ca2+ signaling processes, including exocytosis, a Ca2+ dependent release of neurotransmitters and hormones.Great progress has been made in understanding the mode of action of VGCC in exocytosis, a process distinguished by two sequential yet independent Ca2+ binding reactions. First, Ca2+ binds at the selectivity filter, the EEEE motif of the VGCC, and second, subsequent to a brief and intense Ca2+ inflow to synaptotagmin, a vesicular protein. Inquiry into the functional and physical interactions of the channels with synaptic proteins has demonstrated that exocytosis is triggered during the initial Ca2+ binding at the channel pore, prior to Ca2+ entry. Accordingly, a cycle of secretion begins by an incoming stimulus that releases vesicles from a releasable pool upon Ca2+ binding at the pore, and at the same time, the transient increase in [Ca2+]i primes a fresh set of non-releasable vesicles, to be fused by the next incoming stimulus.We propose a model, in which the Ca2+ binding at the EEEE motif and the consequent conformational changes in the channel are the primary event in triggering secretion, while synaptotagmin acts as a vesicle docking protein. Thus, the channel serves as the molecular On/Off signaling switch, where the predominance of a conformational change in Ca2+-bound channel provides for the fast secretory process.  相似文献   

10.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

11.
UNC-31 or its mammalian homologue, Ca2+-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca2+-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca2+ level (pre-flash Ca2+ was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca2+ evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex.  相似文献   

12.
Complexins are synaptic SNARE complex‐binding proteins that cooperate with synaptotagmins in activating Ca2+‐stimulated, synaptotagmin‐dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin‐independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non‐metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca2+‐triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.  相似文献   

13.
We have monitored electrical activity, voltage-gated Ca2+ currents, and exocytosis in single rat glucagon-secreting pancreatic A-cells. The A-cells were electrically excitable and generated spontaneous Na+- and Ca2+-dependent action potentials. Under basal conditions, exocytosis was tightly linked to Ca2+ influx through ω-conotoxin-GVIA–sensitive (N-type) Ca2+ channels. Stimulation of the A-cells with adrenaline (via β-adrenergic receptors) or forskolin produced a greater than fourfold PKA-dependent potentiation of depolarization-evoked exocytosis. This enhancement of exocytosis was due to a 50% enhancement of Ca2+ influx through L-type Ca2+ channels, an effect that accounted for <30% of the total stimulatory action. The remaining 70% of the stimulation was attributable to an acceleration of granule mobilization resulting in a fivefold increase in the number of readily releasable granules near the L-type Ca2+ channels.  相似文献   

14.

Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.

  相似文献   

15.
Abstract: Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular disease in which impairment of Ca2+ entry into the nerve ending and consequent impaired release of acetylcholine (ACh) results in muscle weakness. The identity of the primary antigenic target molecule(s) of the autoantibodies is uncertain. Electrophysiological studies and 45Ca2+ uptake studies implicate a direct effect on the Ca2+ channel complex at the motor nerve terminal. Some recent studies, however, suggest a more indirect interference caused by binding of autoantibodies to synaptotagmin or syntaxin, molecules presumed to be involved in docking and/or coupling the synaptic vesicles to the Ca2+ channels in the active zone for vesicle exocytosis and transmitter release. Western blot analyses of rat and human brain membrane proteins and pure recombinant synaptotagmin and syntaxin were used to examine directly the targets of LEMS autoantibodies and determine specifically whether or not synaptotagmin and/or syntaxin were general targets in LEMS. IgG from 14 patients with LEMS was used to probe western blots of gels containing synaptotagmin, syntaxin, rat synaptosomal proteins, and human brain membrane proteins. Several similar immunoreactive bands were observed using both rat and human brain membranes. These include high-molecular-weight protein bands whose size would be consistent with being components of Ca2+ channels. No reactive component was observed against either syntaxin or synaptotagmin in IgG of the 14 LEMS patients. However, both human and rat brain membranes contain proteins recognized by antibodies directed against synaptotagmin or syntaxin, indicating their immunologic relatedness and evolutionary conservation. These results suggest that large-molecular-weight proteins consistent with being Ca2+ channel subunits rather than syntaxin and synaptotagmin are general targets of LEMS autoantibodies.  相似文献   

16.
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles.  相似文献   

17.
Synaptic plasticity results from changes in the strength of synaptic transmission upon repetitive stimulation. The amount of neurotransmitter released from presynaptic terminals can regulate short-term plasticity that lasts for a few minutes. This review focuses on short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Whereas SSVs contain classical neurotransmitters and activate ion channels, LDCVs contain neuropeptides and hormones which primarily activate G protein-coupled receptors (GPCRs). Thus, LDCV exocytosis is mainly associated with modulation of synaptic activity and cannot induce synaptic activity by itself. As in SSV exocytosis, repetitive stimulation leads to short-term enhancement of LDCV exocytosis: i.e., activity-dependent potentiation (ADP) which represents potentiation of neurotransmitter release. Short-term plasticity of SSV exocytosis results from Ca2+ accumulation, but ADP of LDCV exocytosis does not. Here, we review the signaling mechanisms and differences of short-term plasticity in exocytotic processes of SSV and LDCV.  相似文献   

18.
A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx elicits exocytosis. Here, we examine the effect on spontaneous exocytosis of a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca2+ syntillas. Ca2+ syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (scintilla, Latin for spark; found in nerve terminals, normally synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal chromaffin cells. Here, we examine the effect of Ca2+ syntillas on exocytosis in chromaffin cells. In such a study on elicited exocytosis, there are two sources of Ca2+: one due to influx from the cell exterior through voltage-gated Ca2+ channels, and that due to release from intracellular stores. To eliminate complications arising from Ca2+ influx, we have examined spontaneous exocytosis where influx is not activated. We report here that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case, release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine, after which syntillas were decreased. We conclude that Ca2+ syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas.  相似文献   

19.
The review brings together the data on neuromuscular transmission upon substitution of different alkaline earth metals for Ca2+ ions. It is known that due to the low selectivity of calcium channels and their ability to conduct other divalent cations, a considerable presynaptic current carried by strontium or barium may develop, which under certain conditions may lead to the neuromuscular transmission. The review illustrates how the equimolar substitution of external Ca2+ by other polyvalent cations affects the parameters of nonquantum, spontaneous, and induced quantum exocytosis of the neuromediator, as well as endocytosis and the activities of acetylcholinesterase and postsynaptic receptors. The effects of the modulators of synaptic transmission under these conditions are also considered.  相似文献   

20.
《Cell calcium》2007,41(5-6):423-439
Katz and co-workers showed that Ca2+ triggers exocytosis. The existence of sub-micrometer domains of greater than 100 μM [Ca2+]i was postulated on theoretical grounds. Using a modified, low-affinity aequorin, Llinas et al. were the first to demonstrate the existence of Ca2+ ‘microdomains’ in squid presynaptic terminals. Over the past several years, it has become clear that individual Ca2+ nano- and microdomains forming around the mouth of voltage-gated Ca2+ channels ascertain the tight coupling of fast synaptic vesicle release to membrane depolarization by action potentials. Recent work has established different geometric arrangements of vesicles and Ca2+ channels at different central synapses and pointed out the role of Ca2+ syntillas – localized, store operated Ca2+ signals – in facilitation and spontaneous release. The coupling between Ca2+ increase and evoked exocytosis is more sluggish in peripheral terminals and neuroendocrine cells, where channels are less clustered and Ca2+ comes from different sources, including Ca2+ influx via the plasma membrane and the mobilization of Ca2+ from intracellular stores. Finally, also non- (electrically) excitable cells display highly localized Ca2+ signaling domains. We discuss in particular the organization of structural microdomains of Bergmann glia, specialized astrocytes of the cerebellum that have only recently been considered as secretory cells. Glial microdomains are the spatial substrate for functionally segregated Ca2+ signals upon metabotropic activation. Our review emphasizes the large diversity of different geometric arrangements of vesicles and Ca2+ sources, leading to a wide spectrum of Ca2+ signals triggering release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号