首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study, we investigated the expression of metallothionein (MT)-I and MT-II in the rat brain following traumatic brain injury (TBI). In the early stage, significant induction of MT-I and MT-II were observed in various regions including ventricle walls, pia mater, and dentate gyrus. At 12-24 h after TBI, strong induction of MT-I mRNA was observed in cerebral cortical layer II/III, amygdala, and piriform cortex where neurons reside. On the other hand, MT-II appeared to be expressed mainly in glial cells localized in the cerebral cortex and hippocampal formation. Three days after TBI, MTs were observed in the vimentin-positive astrocytes in the penumbra as revealed by double immunohistochemistry. The differences in expression of MT-I and MT-II in different brain regions and cell types (neuron vs. glial cells) suggests that multiple regulatory mechanisms are involved in the control of MT expression following brain injury.  相似文献   

3.
Phosphodiesterase-5 (PDE5) is a dimer containing a cGMP-specific catalytic domain and an allosteric cGMP-binding subdomain (GAF A) on each subunit. PDE5 exhibits three conformational forms that can be separated by Native PAGE and are denoted as Bands 1, 2, and 3 in decreasing order of mobility. A preparation comprised mainly of Band 2 PDE5 was partially converted to Band 3 PDE5 by 1 h incubation with cGMP or the PDE5-specific inhibitors sildenafil, vardenafil, or tadalafil, but not with cAMP, milrinone (PDE3-specific), or rolipram (PDE4-specific). Band 2 PDE5 was converted almost entirely to Band 3 PDE5 by overnight incubation with sildenafil at 30 °C. This time-dependent conversion was accompanied by a 7-fold increase in allosteric cGMP-binding activity, suggesting that Band 3 PDE5 is a much more active form than Band 2 PDE5 for allosteric cGMP binding. Conversion of Band 2 PDE5 to Band 3 PDE5 occurred faster by pre-incubation with cGMP, which binds to both the allosteric and catalytic sites of PDE5, than with catalytic site-specific sildenafil. Overnight incubation of a Band 2/Band 3 PDE5 mixture with EDTA caused time-dependent conversion to Band 1 PDE5 (apoenzyme), and this conversion was accompanied by a 50% loss in cGMP-binding activity. After incubation with EDTA, addition of Mn++ or Mg++ caused reversion of Band 1 to a Band 2/Band 3 PDE5 mixture in which Band 3 PDE5 predominated. This reversion was accompanied by a 3-fold increase in allosteric cGMP-binding activity. The combination of results implied that physiological conversion of Band 2 to Band 3 PDE5 by cGMP and/or divalent metal ion occupancy of the catalytic domain would increase allosteric cGMP binding to the enzyme. This conversion would produce a greater negative feedback effect on cGMP action by increasing sequestration of cGMP at the allosteric cGMP-binding site of PDE5 and by increasing cGMP degradation at the catalytic site of the enzyme. This conversion would also increase PDE5 inhibitor binding to the enzyme.  相似文献   

4.
5.
Purified PDE5 preparations exhibited variable proportions of two mobility forms (Bands 2 and 3) by native PAGE. Treatment of recombinant or native PDE5 with either cGMP or a substrate analog such as sildenafil, each of which is known to produce stimulatory effects on enzyme functions, caused a similar native PAGE band-shift to the lower mobility form (shift of Band 2 to Band 3). Incubation of PDE5 with Mg++ or Mn++, which is known to stimulate activity, caused a similar shift of the enzyme from Band 2 to Band 3 as did cGMP or sildenafil, but incubation with EDTA caused a time- and concentration-dependent shift to higher mobility (shift of Bands 2 and 3 to Band 1). A slow time course of the EDTA-induced band-shift suggested removal of a pre-bound metal ion (Me++) with affinity of ~ 0.1 nM, which was similar to the previously determined affinity of PDE5 for Zn++. The EDTA-treated enzyme (Band 1) could be shifted to Bands 2 and 3 by addition of cGMP, sildenafil, or Me++; however, the cGMP- or sildenafil-induced shift was inhibited and the Me++-induced shift was facilitated by treatment with EDTA. Results suggested that Me++ removal from PDE5 produces a unique apoenzyme form (Band 1, more globular, negatively charged, or both) of PDE5 that can be partially converted to forms (Band 2, less globular or negatively charged, or both; and Band 3, more elongated/positively charged, or both) by addition of Me++, substrate, or substrate analog. It is concluded that Me++ causes conversion of PDE5 to similar conformational forms as caused by substrate or inhibitor binding to the catalytic site.  相似文献   

6.
Sonic hedgehog (SHH), a morphogen critical for embryogenesis, has also been shown to be neuroprotective. We have recently reported that pretreatment of rat cortical neurons for 8 h with brain-derived neurotrophic factor (BDNF; 100 ng/ml) affords protection against neurotoxicity of 3-nitropropionic acid (3-NP; 2.5 mM for 24 h), a mitochondrial complex II inhibitor. However, whether SHH is involved in BDNF-mediated neuroprotection remains unknown. Herein we tested whether BDNF induces SHH expression and if so, whether BDNF induction of SHH contributes to the observed neuroprotective effects. We found BDNF (100 ng/ml) increased SHH expression at both mRNA and protein levels. BDNF protection against 3-NP was abolished by cyclopamine (CPM; 5 μM), the SHH pathway inhibitor. Preconditioning of cortical neurons with N-terminal fragment of SHH (SHH-N; 0.1-1 ng/ml) was sufficient to confer resistance. These results indicate that BDNF induces SHH expression, which contributes to neuroprotection against 3-NP toxicity in rat cortical neurons.  相似文献   

7.
Sildenafil is the first oral PDE5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. In the present study, we investigated the effect of sildenafil on adipogenesis in 3T3L1 preadipocytes. Treatment with sildenafil for 8 days significantly promoted adipogenesis characterized by increased lipid droplet and triglyceride content in 3T3L1 cells. Meanwhile, sildenafil induced a pronounced up-regulation of the expression of adipocyte-specific genes, such as aP2 and GLUT4. The results by RT-PCR and Western blotting further showed that sildenafil increased the sequential expression of C/EBPβ, PPARγ and C/EBPα. Additionally, we found that the other two PDE5 inhibitors (vardenafil and tadalafil) and the cGMP analog 8-pCPT-cGMP also increased adipogenesis. Likewise, 8-pCPT-cGMP could up-regulate the expression of adipogenic and adipocyte-specific genes. Importantly, the PKG inhibitor Rp-8-pCPT-cGMP was able to inhibit both sildenafil and 8-pCPT-cGMP-induced adipogenesis. Furthermore, sildenafil promoted basal and insulin-mediated glucose uptake in 3T3L1 cells, which was counteracted by Rp-8-pCPT-cGMP. These results indicate that sildenafil could promote adipogenesis accompanied by increased glucose uptake through a PKG pathway at least partly.  相似文献   

8.
According to their respective elution order, specificity for cAMP and cGMP, their sensitivity to calmodulin, and their modulation by cGMP and rolipram, four cyclic nucleotide phosphodiesterases (PDE) were separated from the cytosol: PDE I (calmodulin-sensitive), PDE II (stimulated by cGMP, PDE IV (cGMP specific-PDE and inhibited by rolipram) and PDE V (cGMP specific). PDE IV (Km=1.4 M) was competitively inhibited rolipram (Ki=1.2 M) whereas PDE V (Km=0.83 M) was competitively inhibited by zaprinast in the molar range (Ki=0.12 M). Moreover the microsomal fraction contained three PDE isoforms: PDE II, PDE III (inhibited by cGMP or indolidan) and PDE IV. These results show that cAMP degradation in cytosolic and membrane fractions is modulated by cGMP and selectively inhibited by rolipram and, in addition, by indolidan in membrane fractions. (Mol Cell Biochem140: 171–175, 1994)  相似文献   

9.
Mild hypothermia is a promising neuroprotective therapy in stroke management. However, little is known about its effects on the global protein expression patterns in brain regions affected by ischemic stroke. We investigated protein expression changes associated with the neuroprotective effects of hypothermia via a functional proteomics approach through the analysis of the core (striatum) and the penumbra (cortex) after an ischemic insult in rats induced by endothelin-1 (Et-1). Functional outcome, infarct volume and related global protein expression changes were assessed 24 h after the insult using two-dimensional difference gel electrophoresis. Mild hypothermia, induced 20 min after endothelin-1 infusion, improved the neurological outcome, reflected by a 36% reduction in infarct volume and a significantly better neurological deficit score. Hypothermia was typically associated with opposite protein expression changes inthe cortex to those induced by stroke under normothermic conditions, but not in the striatum. The main cellular processes rescued by hypothermia and potentially involved in the protection of the cortex are cellular assembly and organization, followed by cell signaling, thereby confirming that hypothermia is neuroprotective through multiple molecular and cellular pathways.  相似文献   

10.
Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.  相似文献   

11.
Arthropod venoms are potential sources of neuroactive substances, providing new tools for the design of drugs. The aim of this study was to evaluate the effects of Dinoponera quadriceps venom (DqV) on seizure models in mice induced by pentylenetetrazole (PTZ), pilocarpine, and strychnine. In the PTZ model, intraperitoneal treatment with DqV (0.5 mg/kg) increased the time until the first seizure and the percentage of survival (155.4 ± 27.7 s/12.5%, p < 0.05) compared to the control group (79.75 ± 3.97 s/0%), whereas endovenous treatment (0.1 and 0.5 mg/kg) decreased the time until the first seizure (0.1 mg/kg: 77.83 ± 5.3 s versus 101.0 ± 3.3 s in the control group; 0.5 mg/kg: 74.43 ± 3.9 s versus 101.0 ± 3.3 s for the control group, p < 0.05). We did not observe significant changes in the pilocarpine- and strychnine-induced seizure models. In assays that measured oxidative parameters in the PTZ model, intraperitoneal treatment with DqV (0.5 and 2.0 mg/kg) only decreased the levels of MDA and nitrite in the cortex. However, endovenous treatment with DqV (0.1 and 0.5 mg/kg) increased the levels of MDA in the cortex and hippocampus and at a dose of 0.5 mg/kg in the striatum. Moreover, increased in nitrite content was observed in all three of the brain regions analyzed. Taken together, the D. quadriceps venom caused both neuroprotective and neurotoxic effects in a PTZ-induced seizure model, and this effect was dependent on the route of administration used.  相似文献   

12.
cGMP-degrading pathways have received little attention in the context of angiogenesis. In the present study we set out to determine whether cGMP-specific phosphodiesterase 5 (PDE5) inhibition affects new blood vessel growth. Incubation of chicken chorioallantoic membranes (CAMs) in vivo with sildenafil increased vascular length in a dose-dependent manner. Moreover, incubation of cultured endothelial cells (ECs) with the PDE5 inhibitor promoted proliferation, migration, and organization into tube-like structures. The effects of sildenafil on the angiogenesis-related properties of EC could be blocked by pre-treatment with the soluble guanylyl cyclase (sGC) inhibitor ODQ or the protein kinase G (PKG) I inhibitor DT-3. In addition, over-expression of sGC in EC led to an enhanced growth and migratory response to sildenafil. To study the signaling pathways implicated in the sildenafil-stimulated angiogenic responses we determined the phosphorylation status of mitogen-activated protein kinase (MAPK) members. Incubation of cells with sildenafil increased both extracellular signal regulated kinase 1/2 (ERK1/2) and p38 phosphorylation in a time-dependent manner. Inhibition of MEK by PD98059 and p38 with SB203580 blocked sildenafil-induced proliferation and migration, respectively, suggesting that these MAPK members are downstream of PDE5 and mediate the angiogenic effects of sildenafil. PDE5 inhibitors could, thus, be used in disease states where neo-vessel growth is desired.  相似文献   

13.
We attempted to identify and establish the role of cyclic nucleotide phosphodiesterase (PDE) isozymes in human basophils by using standard biochemical techniques as well as describing the effects of isozyme-selective and nonselective inhibitors of PDE. The nonselective PDE inhibitors, theophylline and 3-isobutyl-1-methylxanthine, inhibited anti-IgE-induced release of histamine and leukotriene C4 (LTC4) from basophils. This inhibition was accompanied by elevations in cAMP levels. Rolipram, an inhibitor of the low Km cAMP-specific PDE (PDE IV), inhibited the release of both histamine and LTC4 from activated basophils and increased cAMP levels in these cells. In contrast, mediator release from basophils was not inhibited by either siguazodan or SK&F 95654, inhibitors of the cGMP-inhibited PDE (PDE III) or zaprinast, an inhibitor of the cGMP-specific PDE (PDE V). SK&F 95654 failed to elevate basophil cAMP in these experiments whereas zaprinast induced significant increases in cAMP content. The inhibitory effect of rolipram on mediator release was potentiated by siguazodan or SK&F 95654, but not by zaprinast. SK&F 95654 also enhanced the ability of rolipram to increase cAMP content. Forskolin, a direct activator of adenylate cyclase, inhibited IgE-dependent release of mediators from basophils and increased cAMP levels in these cells. These effects were enhanced by rolipram, but not by SK&F 95654 or zaprinast. The cell permeant analog of cAMP, dibutyryl cAMP, inhibited mediator release from these cells, a property not shared by either dibutyryl-cGMP or sodium nitroprusside, an activator of soluble guanylate cyclase. The presence of both PDE III and PDE IV was confirmed by partially purifying and characterizing PDE activity in broken cell preparations. Overall, these data lend support to the hypothesis that cAMP inhibits mediator release from basophils and suggest that the major PDE isozyme responsible for regulating cyclic AMP content in these cells is PDE IV, with a minor contribution from PDE III. However, the finding that zaprinast caused increases in cAMP without inhibiting mediator release indicates that cAMP accumulation is not invariably linked to an inhibition of basophil activation.  相似文献   

14.
The neurosteroid allopregnanolone has pronounced neuroprotective actions, increases myelination, and enhances neurogenesis. Evidence suggests that allopregnanolone dysregulation may play a role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Our prior data demonstrate that allopregnanolone is reduced in prefrontal cortex in male patients with AD compared to male cognitively intact control subjects, and inversely correlated with neuropathological disease stage (Braak and Braak). We therefore determined if allopregnanolone levels are also reduced in AD patients compared to control subjects in temporal cortex, utilizing a larger set of samples from both male and female patients. In addition, we investigated if neurosteroids are altered in subjects who are APOE4 allele carriers. Allopregnanolone, dehydroepiandrosterone (DHEA), and pregnenolone levels were determined in temporal cortex postmortem samples by gas chromatography/mass spectrometry, preceded by high performance liquid chromatography (40 subjects with AD/41 cognitively intact control subjects). Allopregnanolone levels are reduced in temporal cortex in patients with AD (median 2.68 ng/g, n = 40) compared to control subjects (median 5.64 ng/g, n = 41), Mann–Whitney p = 0.0002, and inversely correlated with Braak and Braak neuropathological disease stage (Spearman r = − 0.38, p = 0.0004). DHEA and pregnenolone are increased in patients with AD compared to control subjects. Patients carrying an APOE4 allele demonstrate reduced allopregnanolone levels in temporal cortex (Mann–Whitney p = 0.04). In summary, our findings indicate that neurosteroids are altered in temporal cortex in patients with AD and related to neuropathological disease stage. In addition, the APOE4 allele is associated with reduced allopregnanolone levels. Neurosteroids may be relevant to the neurobiology and therapeutics of AD.  相似文献   

15.
Wang P  Wu P  Myers JG  Stamford A  Egan RW  Billah MM 《Life sciences》2001,68(17):1977-1987
Human, dog and rabbit corpus cavernosum type 5 phosphodiesterases (PDE5) were isolated and their characteristics were compared. The three enzymes showed Km values of 0.8, 2.1 and 2.3 uM, respectively. They exhibited similar pH-dependence with optimal pH being 7.5. They required Mg++ for activity and the activity was suppressed by high concentrations of Zn++ (0.1-1 mM). Sildenafil potently inhibited the three enzymes with IC50 values of 3.6, 1.7 and 3.0 nM, respectively. Dipyridamole and IBMX (3-isobutyl-1-methylxanthine) each also inhibited the three enzymes with similar, albeit lower, potencies (IC50 about 1.1 and 5.7 uM, respectively). However, zaprinast exhibited a significantly higher potency against the rabbit enzyme (IC50 53 nM) than against the human and dog PDE5s (IC5s 332 and 217 nM, respectively). Thus, the corpus cavernosum PDE5s are very similar among the various species with the only significant difference being their sensitivity to zaprinast. Human platelet PDE5 was also characterized by comparison with the corpus cavernosum enzyme. The platelet enzyme exhibited a Km, pH-, Mg++- and Zn++-dependence, and sensitivity to sildenafil and zaprinast very similar to those of the corpus cavernosum PDE5. However, compared with corpus cavernosum PDE5, the platelet enzyme exhibited higher sensitivity to dipyridamole and IBMX (IC50 0.46 and 1.8 uM, respectively). This study shows that despite similar kinetics and enzymatic properties, corpus cavernosum PDE5s from different species, and corpus cavernosum and platelet PDE5s, can have differential sensitivity to pharmacological inhibitors.  相似文献   

16.
Recent data suggests that metallothioneins (MTs) are major neuroprotective proteins within the CNS. In this regard, we have recently demonstrated that MT-IIA (the major human MT-I/-II isoform) promotes neural recovery following focal cortical brain injury. To further investigate the role of MTs in cortical brain injury, MT-I/-II expression was examined in several different experimental models of cortical neuron injury. While MT-I/-II immunoreactivity was not detectable in the uninjured rat neocortex, by 4 days, following a focal cortical brain injury, MT-I/-II was found in astrocytes aligned along the injury site. At latter time points, astrocytes, at a distance up to several hundred microns from the original injury tract, were MT-I/-II immunoreactive. Induced MT-I/-II was found both within the cell body and processes. Using a cortical neuron/astrocyte co-culture model, we observed a similar MT-I/-II response following in vitro injury. Intriguingly, scratch wound injury in pure astrocyte cultures resulted in no change in MT-I/-II expression. This suggests that MT induction was specifically elicited by neuronal injury. Based upon recent reports indicating that MT-I/-II are major neuroprotective proteins within the brain, our results provide further evidence that MT-I/-II plays an important role in the cellular response to neuronal injury.  相似文献   

17.
Eph/ephrin signaling is pivotal in prenatal angiogenesis while its potential role in postnatal angiogenesis largely remains to be explored. Therefore its putative angiogenic and therapeutic effects were explored in endothelium and in myocardial ischemia. In culture of human aortic endothelial cells the fusion protein ephrinB2-Fc induced cell proliferation (p < 0.0005) and in the murine aortic ring model ephrinB2-Fc induced increased sprouting (p < 0.05). Myocardial infarction was induced by ligation of the left anterior descending artery in mouse. During the following 2 weeks mRNA of the receptor/ligand pair EphB4/ephrinB2 was expressed dichotomously (p < 0.05) and other Eph/ephrin pairs were expressed to a lesser degree. Twenty-four hours after intraperitoneal administration of ephrinB2-Fc it was detected in abundance throughout the myocardium along capillaries, showing signs of increased mitosis. After 4 weeks the capillary density was increased 28% in the periinfarcted area (p < 0.05) to a level not different from healthy regions of the heart where no change was observed. These results implicate that EphB4/ephrinB2 is an important signaling pathway in ischemic heart disease and its modulation may induce therapeutic angiogenesis.  相似文献   

18.
To predict the response of retinal phosphodiesterase on binding catalytic site inhibitors, a homology model of the catalytic domain of subunit alpha of type 6 phosphodiesterase has been built by selecting an experimental structure of type 5 phosphodiesterase as template. Guanosine monophosphate and inhibitors (sildenafil, zaprinast) docked to the type 6 phosphodiesterase binding crevice similarly to the experimental conformations of guanosine monophosphate and sildenafil in the catalytic domain of type 5 phosphodiesterase. Inhibitors, but not guanosine monophosphate, interacted with Phe778 and Met759 (sildenafil) or Met759 (zaprinast), the key residues involved in the interaction between the catalytic binding domain and the inhibitory gamma subunit of type 6 phosphodiesterase. Agreeing with predictions obtained by modelling binding, both inhibitors (1 and 10muM) enhanced the amplitude of electric light responses of the isolated rat retina, however, the enhancement was smaller for the more efficacious inhibitor sildenafil. These paradoxical responses can be explained as a result of the enhancement of light activation of PDE6 through the competition between the catalytic site inhibitors and the gamma subunit residues for catalytic domain residues Phe778 and Met759.  相似文献   

19.
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.  相似文献   

20.
BackgroundThe anti-inflammatory effects of the selective phosphodiesterase (PDE) inhibitors cilostazol (PDE 3), RO 20-1724 (PDE 4) and sildenafil (PDE 5) were examined in a murine model of allergic asthma. These compounds were used alone and in combination to determine any potential synergism, with dexamethasone included as a positive control.MethodsControl and ovalbumin sensitised Balb/C mice were administered orally with each of the possible combinations of drugs at a dose of 3 mg/Kg for 10 days.ResultsWhen used alone, RO 20-1724 significantly reduced eosinophil influx into lungs and lowered tumour necrosis factor-α, interleukin-4 and interleukin-5 levels in the bronchoalveolar lavage fluid when compared to untreated mice. Treatment with cilostazol or sildenafil did not significantly inhibit any markers of inflammation measured. Combining any of these PDE inhibitors produced no additive or synergistic effects. Indeed, the anti-inflammatory effects of RO 20-1724 were attenuated by co-administration of either cilostazol or sildenafil.ConclusionsThese results suggest that concurrent treatment with a PDE 3 and/or PDE 5 inhibitor will reduce the anti-inflammatory effectiveness of a PDE 4 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号