首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BRCT domains are present in an ever expanding family of proteins that includes many DNA repair and checkpoint proteins. The most prominent member of the BRCT family is BRCA1, mutations in which are responsible for a high proportion of breast and ovarian cancers. BRCT domains act as protein–protein interaction modules and facilitate the formation of hetero- and homo-oligomers. The domains occur either singly or in pairs, with up to eight domains in a single protein. When in pairs the domains are separated by a short inter-BRCT linker. Numerous crystal structures have been determined for BRCT domains from a range of different proteins, which indicate that the overall structure of the BRCT domains is generally well conserved. In contrast, the positions and structures of the linker regions are more varied, as are the roles of the linkers. Here, we describe the protein–protein interactions involving three different inter-BRCT linker regions, those of DNA ligase IV (LigIV), Schizosaccharomyces pombe Crb2 and human 53BP1.  相似文献   

2.
We constructed chimeric proteins that consist of two green fluorescent protein variants, EBFP and EGFP, connected by flexible linkers, (GGGGS)n (n = 3 approximately 4), and helical linkers, (EAAAK)n (n = 2 approximately 5). The conformations of the chimeric proteins with the various linkers were evaluated using small-angle X-ray scattering (SAXS). The SAXS experiments showed that introducing the short helical linkers (n = 2 approximately 3) causes multimerization, while the longer linkers (n = 4 approximately 5) solvate monomeric chimeric proteins. With the moderate-length linkers (n = 4), the observed radius of gyration (R(g)) and maximum dimension (D(max)) were 38.8 A and 120 A with the flexible linker, and 40.2 A and 130 A with the helical linker, respectively. The chimeric protein with the helical linker assumed a more elongated conformation as compared to that with the flexible linker. When the length of the helical linker increased (n = 5), R(g) and D(max) increased to 43.2 A and 140 A, respectively. These results suggest that the longer helix effectively separates the two domains of the chimeric protein. Considering the connectivity of the backbone peptide of the protein, the helical linker seems to connect the two domains diagonally. Surprisingly, the chimeric proteins with the flexible linker exhibited an elongated conformation, rather than the most compact side-by-side conformation expected from the fluorescence resonance energy transfer (FRET) analysis. Furthermore, the SAXS analyses suggest that destabilization of the short helical linker causes multimerization of the chimeric proteins. Information about the global conformation of the chimeric protein is thus be necessary for optimization of the linker design.  相似文献   

3.
Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly‐rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly‐rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein–protein complex. Gly‐rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand‐binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X‐ray crystallography, nuclear magnetic resonance and cryo‐electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein–protein complexes, and to obtain protein dimers.  相似文献   

4.
The fusion of different protein domains via peptide linkers is a powerful, modular approach to obtain proteins with new functions. A detailed understanding of the conformational behavior of peptide linkers is important for applications such as fluorescence resonance energy transfer (FRET)-based sensor proteins and multidomain proteins involved in multivalent interactions. To investigate the conformational behavior of flexible glycine- and serine-containing peptide linkers, we constructed a series of fusion proteins of enhanced cyan and yellow fluorescent proteins (ECFP-linker-EYFP) in which the linker length was systematically varied by incorporating between 1 and 9 GGSGGS repeats. As expected, both steady-state and time-resolved fluorescence measurements showed a decrease in energy transfer with increasing linker length. The amount of energy transfer observed in these fusion proteins can be quantitatively understood by simple models that describe the flexible linker as a worm-like chain with a persistence length of 4.5 A or a Gaussian chain with a characteristic ratio of 2.3. The implications of our results for understanding the properties of FRET-based sensors and other fusion proteins with Gly/Ser linkers are discussed.  相似文献   

5.
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase, the enzyme that catalyzes the first committed step of fatty acid synthesis. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin. In most biotinylated proteins, the biotin moiety is attached to a lysine residue located about 35 residues from the carboxyl terminus of the protein, which lies in the center of a strongly conserved sequence that forms a tightly folded anti-parallel beta-barrel structure. Located upstream of the conserved biotinoyl domain sequence are proline/alanine-rich sequences of varying lengths, which have been proposed to act as flexible linkers. In E. coli BCCP, this putative linker extends for about 42 residues with over half of the residues being proline or alanine. I report that deletion of the 30 linker residues located adjacent to the biotinoyl domain resulted in a BCCP species that was defective in function in vivo, although it was efficiently biotinylated. Expression of this BCCP species failed to restore normal growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperatures. In contrast, replacement of the deleted BCCP linker with a linker derived from E. coli pyruvate dehydrogenase gave a chimeric BCCP species that had normal in vivo function. Expression of BCCPs having deletions of various segments of the linker region of the chimeric protein showed that some deletions of up to 24 residues had significant or full biological activity, whereas others had very weak or no activity. The inactive deletion proteins all lacked an APAAAAA sequence located adjacent to the tightly folded biotinyl domain, whereas deletions that removed only upstream linker sequences remained active. Deletions within the linker of the wild type BCCP protein also showed that the residues adjacent to the tightly folded domain play an essential role in protein function, although in this case some proteins with deletions within this region retained activity. Retention of activity was due to fusion of the domain to upstream sequences. These data provide new evidence for the functional and structural similarities of biotinylated and lipoylated proteins and strongly support a common evolutionary origin of these enzyme subunits.  相似文献   

6.
Artificial multidomain proteins with enhanced structural and functional properties can be utilized in a broad spectrum of applications. The design of chimeric fusion proteins utilizing protein domains or one‐domain miniproteins as building blocks is an important advancement for the creation of new biomolecules for biotechnology and medical applications. However, computational studies to describe in detail the dynamics and geometry properties of two‐domain constructs made from structurally and functionally different proteins are lacking. Here, we tested an in silico design strategy using all‐atom explicit solvent molecular dynamics simulations. The well‐characterized PDZ3 and SH3 domains of human zonula occludens (ZO‐1) (3TSZ), along with 5 artificial domains and 2 types of molecular linkers, were selected to construct chimeric two‐domain molecules. The influence of the artificial domains on the structure and dynamics of the PDZ3 and SH3 domains was determined using a range of analyses. We conclude that the artificial domains can function as allosteric modulators of the PDZ3 and SH3 domains. Proteins 2016; 84:1358–1374. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Understanding the structure and function of protein complexes and multi‐domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon S ortase‐mediated and Na tive chemical ligation using synthetic Pe ptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps – sortase‐mediated and native chemical ligation – together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Structural investigations are frequently hindered by difficulties in obtaining diffracting crystals of the target protein. Here, we report the crystallization and structure solution of the U2AF homology motif (UHM) domain of splicing factor Puf60 fused to Escherichia coli thioredoxin A. Both modules make extensive crystallographic contacts, contributing to a well-defined crystal lattice with clear electron density for both the thioredoxin and the Puf60-UHM module. We compare two short linker sequences between the two fusion domains, GSAM and GSPPM, for which only the GSAM-linked fusion protein yielded diffracting crystals. While specific interdomain contacts are not observed for both fusion proteins, NMR relaxation data in solution indicate reduced interdomain mobility between the Trx and Puf60-UHM modules. The GSPPM-linked fusion protein is significantly more flexible, albeit both linker sequences have the same number of degrees of torsional freedom. Our analysis provides a rationale for the crystallization of the GSAM-linked fusion protein and indicates that in this case, a four-residue linker between thioredoxin A and the fused target may represent the maximal length for crystallization purposes. Our data provide an experimental basis for the rational design of linker sequences in carrier-driven crystallization and identify thioredoxin A as a powerful fusion partner that can aid crystallization of difficult targets.  相似文献   

9.
With the aim of separating the domains of a bifunctional fusion protein, the ability of several lengths of helix-forming peptides to separate two weakly interacting beta-can domains was compared with that of flexible linkers or of a three alpha-helices bundle domain. We introduced helix-forming peptide linkers A(EAAAK)nA (n = 2-5) between two green fluorescent protein variants, EBFP and EGFP, and investigated their spectral properties. The fluorescence resonance energy transfer from EBFP to EGFP decreased as the length of the linkers increased. The circular dichroism spectra analysis suggested that the linkers form an alpha-helix and the alpha-helical contents increased as the length of the linkers increased. The results clearly suggested the ability of the helical linkers to control the distance and reduce the interference between the domains. This 'linker engineering' may open a way to the rational design of linkers which maximize the multiple functions of fusion proteins or de novo multi-domain proteins.  相似文献   

10.
Kainate-binding proteins belong to an elusive class of putative ionotropic glutamate receptors that to date have not been shown to form functional ion channels in heterologous expression systems, despite binding glutamatergic agonists with high affinity. To test the hypothesis that inefficient or interrupted signal transduction from the ligand-binding site via linker domains to the ion pore (gating) might be responsible for this apparent lack of function, we transplanted the short homologous linker sequences from the fully functional rat kainate receptor GluR6 into frog kainate-binding protein. We were able to generate chimeric receptors that are functional in the Xenopus oocyte expression system and in human embryonic kidney 293 cells. The linker domains A and B in particular appear to be crucial for gating, because a functional kainate-binding protein was observed when at least parts of both linkers were derived from GluR6. We speculate that to enable signal transduction from the ligand-binding site to the ion pore of the frog kainate-binding protein, the linker structure of the protein has to undergo an essential conformational alteration, possibly mediated by an as yet unknown subunit or modulatory protein.  相似文献   

11.
Fusion proteins composed of a cellulose-binding domain from Neocallimastix patriciarum cellulase A and Candida antarctica lipase B were constructed using different linker peptides. The aim was to create proteolytically stable linkers that were able to join the functional modules without disrupting their function. Six fusion variants containing linkers of 4-44 residues were expressed in Pichia pastoris and analysed. Three variants were found to be stable throughout 7-day cultivations. The cellulose-binding capacities of fusion proteins containing short linkers were slightly lower compared with those containing long linkers. The lipase-specific activities of all variants, in solution or immobilized on to cellulose, were equal to that of the wild-type lipase.  相似文献   

12.
The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptor domains into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker. The significance of this arrangement is unknown. We characterized the role of the linker in SNAP-25, a neuronal SNARE, by using overexpression techniques in synaptosomal-associated protein of 25 kDa (SNAP-25) null mouse chromaffin cells and fast electrophysiological techniques. We confirm that the palmitoylated linker-cysteines are important for membrane association. A SNAP-25 mutant without cysteines supported exocytosis, but the fusion rate was slowed down and the fusion pore duration prolonged. Using chimeric proteins between SNAP-25 and its ubiquitous homologue SNAP-23, we show that the cysteine-containing part of the linkers is interchangeable. However, a stretch of 10 hydrophobic and charged amino acids in the C-terminal half of the SNAP-25 linker is required for fast exocytosis and in its absence the calcium dependence of exocytosis is shifted toward higher concentrations. The SNAP-25 linker therefore might have evolved as an adaptation toward calcium triggering and a high rate of execution of the fusion process, those features that distinguish exocytosis from other membrane fusion pathways.  相似文献   

13.
We construct nanotubes using native protein structures and their native associations from structural databases. The construction is based on a shape-guided symmetric self-assembly concept. Our strategy involves fusing judiciously-selected oligomerization domains via peptide linkers. Linkers are inherently flexible, hence their choice is critical: they should position the domains in three-dimensional space in the desired orientation while retaining their own natural conformational tendencies; however, at the same time, retain the construct stability. Here we outline a design scheme which accounts for linker flexibility considerations, and present two examples. The first is HIV-1 capsid protein, which in vitro self-assembles into nanotubes and conical capsids, and its linker exists as a short flexible loop. The second involves novel nanotubes construction based on antimicrobial homodimer Magainin 2, employing linkers of distinct lengths and flexibility levels. Our strategy utilizes the abundance of unique shapes and sizes of proteins and their building blocks which can assemble into a vast number of combinations, and consequently, nanotubes of distinct morphologies and diameters. Computational design and assessment methodologies can help reduce the number of candidates for experimental validation. This is an invited paper for a special issue on protein dynamics, here focusing on flexibility in nanotube design based on protein building blocks.  相似文献   

14.
Control of protein functional dynamics by peptide linkers   总被引:6,自引:0,他引:6  
Control of structural flexibility is essential for the proper functioning of a large number of proteins and multiprotein complexes. At the residue level, such flexibility occurs due to local relaxation of peptide bond angles whose cumulative effect may result in large changes in the secondary, tertiary or quaternary structures of protein molecules. Such flexibility, and its absence, most often depends on the nature of interdomain linkages formed by oligopeptides. Both flexible and relatively rigid peptide linkers are found in many multidomain proteins. Linkers are thought to control favorable and unfavorable interactions between adjacent domains by means of variable softness furnished by their primary sequence. Large-scale structural heterogeneity of multidomain proteins and their complexes, facilitated by soft peptide linkers, is now seen as the norm rather than the exception. Biophysical discoveries as well as computational algorithms and databases have reshaped our understanding of the often spectacular biomolecular dynamics enabled by soft linkers. Absence of such motion, as in so-called molecular rulers, also has desirable functional effects in protein architecture. We review here the historic discovery and current understanding of the nature of domains and their linkers from a structural, computational, and biophysical point of view. A number of emerging applications, based on the current understanding of the structural properties of peptides, are presented in the context of domain fusion of synthetic multifunctional chimeric proteins.  相似文献   

15.
The identification and annotation of protein domains provides a critical step in the accurate determination of molecular function. Both computational and experimental methods of protein structure determination may be deterred by large multi-domain proteins or flexible linker regions. Knowledge of domains and their boundaries may reduce the experimental cost of protein structure determination by allowing researchers to work on a set of smaller and possibly more successful alternatives. Current domain prediction methods often rely on sequence similarity to conserved domains and as such are poorly suited to detect domain structure in poorly conserved or orphan proteins. We present here a simple computational method to identify protein domain linkers and their boundaries from sequence information alone. Our domain predictor, Armadillo (http://armadillo.blueprint.org), uses any amino acid index to convert a protein sequence to a smoothed numeric profile from which domains and domain boundaries may be predicted. We derived an amino acid index called the domain linker propensity index (DLI) from the amino acid composition of domain linkers using a non-redundant structure dataset. The index indicates that Pro and Gly show a propensity for linker residues while small hydrophobic residues do not. Armadillo predicts domain linker boundaries from Z-score distributions and obtains 35% sensitivity with DLI in a two-domain, single-linker dataset (within +/-20 residues from linker). The combination of DLI and an entropy-based amino acid index increases the overall Armadillo sensitivity to 56% for two domain proteins. Moreover, Armadillo achieves 37% sensitivity for multi-domain proteins, surpassing most other prediction methods. Armadillo provides a simple, but effective method by which prediction of domain boundaries can be obtained with reasonable sensitivity. Armadillo should prove to be a valuable tool for rapidly delineating protein domains in poorly conserved proteins or those with no sequence neighbors. As a first-line predictor, domain meta-predictors could yield improved results with Armadillo predictions.  相似文献   

16.
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.  相似文献   

17.
A major challenge with testing designs of protein conformational switches is the need for experimental probes that can independently monitor their individual protein domains. One way to circumvent this issue is to use a molecular simulation approach in which each domain can be directly observed. Here we report what we believe to be the first molecular simulations of mutually exclusive folding in an engineered two-domain protein switch, providing a direct view of how folding of one protein drives unfolding of the other in a barnase-ubiquitin fusion protein. These simulations successfully capture the experimental effects of interdomain linker length and ligand binding on the extent of unfolding in the less stable domain. In addition, the effect of linker length on the potential for oligomerization, which eliminates switch activity, is in qualitative agreement with analytical ultracentrifugation experiments. We also perform what we believe to be the first study of protein unfolding via progressive localized compression. Finally, we are able to explore the kinetics of mutually exclusive folding by determining the effect of linker length on rates of unfolding and refolding of each protein domain. Our results demonstrate that molecular simulations can provide seemingly novel biological insights on the behavior of individual protein domains, thereby aiding in the rational design of bifunctional switches.  相似文献   

18.
Since protein–protein interactions (PPIs) regulate a variety of cellular processes, the detection of PPIs is crucial for elucidating the underlying molecular mechanisms as well as developing therapeutics. In this study, we propose a novel system to detect PPIs using the distinct domains of focal adhesion kinase (FAK). In this system named “split FAK”, the linker and kinase domains in native FAK are tethered separately to two target proteins of interest. The interaction between the target proteins brings the linker and kinase domains into proximity, which leads to phosphorylation at Y397 of the linker domain, recruitment of another tyrosine kinase Src, and phosphorylation at Y576 of the kinase domain. PPIs are readily detected by probing phosphorylation at Y397 and Y576 of these domains. To demonstrate this system, we designed a series of split FAK chimeras with different domain structures. Consequently, dimerizer-induced interaction between FK506-binding protein 12 (FKBP) and the T2098L mutant of FKBP12-rapamycin binding domain (FRB) was clearly detected by probing phosphorylation at the specific tyrosine residues of most of the split FAK chimeras. This is a novel PPI detection system based on a mechanism-inspired design of a trans-activated split kinase.  相似文献   

19.
H X Zhou 《Biochemistry》2001,40(50):15069-15073
Recently many attempts have been made to design high-affinity DNA-binding proteins by linking two domains. Here a theory for guiding these designs is presented. Flexible linkers may play three types of roles: (a) linking domains which by themselves are unfolded and bind to DNA only as a folded dimer (as in a designed single-chain Arc repressor), (b) connecting domains which can separately bind to DNA (as in the Oct-1 POU domain), and (c) linking a DNA-binding domain with a dimerization domain (as in the lambda repressor). In (a), the linker keeps the protein as a folded dimer so that it is always DNA-binding-competent. In (b), the linker is predicted to enhance DNA-binding affinity over those of the individual domains (with dissociation constants K(A) and K(B)) by p(d(0))/K(B) or p(d(0))/K(A), where p(d(0)) = (3/4pil(p)bL)(3/2) exp(-3d(0)(2)/4l(p)bL)(1 - 5l(p)/4bL +...) is the probability density for the end-to-end vector of the linker with L residues to have a distance d(0). In (c), the linker is predicted to enhance the binding affinity by K(d)(C)/p(d(0)), where K(d)(C) is the dimer dissociation constant for the dimerization domain. The predicted affinity enhancements are found to be actually reached by the Oct-1 POU domain and lambda repressor. However, there is room for improvement in many of the recently designed proteins. The theoretical limits presented should provide a useful guide for current efforts of designing DNA-binding proteins.  相似文献   

20.
BRCTs are protein-docking modules involved in eukaryotic DNA repair. They are characterized by low sequence homology with generally well-conserved structure organization. In a considerable number of proteins, a pair of BRCT structural repeats occurs, connected with inter-BRCT linkers, variable in length, sequence and structure. Linkers may separate and control the relative position of BRCT domains as well as protect and stabilize the hydrophobic inter-BRCT interface region. Their vital role in protein function has been demonstrated by recent findings associating missense mutations in the inter-repeat linker region of the BRCT domain of BRCA1 (BRCA1-BRCT) to hereditary breast/ovarian cancer. The interaction of 53BP1 with the core domain of the p53 tumor suppressor involves the C-terminal BRCT repeat as well as the inert-BRCT linker of the tandem BRCT domain of 53BP1 (53BP1-BRCT). High-accuracy differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to characterize the heat-induced unfolding of 53BP1-BRCT domain. The calorimetric results provide evidence for unfolding to an intermediate, only partly unfolded state, which, based on the CD results, retains the secondary structural characteristics of the native protein. A direct comparison with the corresponding thermal processes for BRAC1-BRCT and BARD1-BRCT provides evidence that the observed behavior is analogous to BRCA1-BRCT even though the two domains differ substantially in the linker structure. Moreover, chemical denaturation experiments of the untagged 53BP1-BRCT and comparison with BRCA1 and BARD1 BRCTs show that no clear association can be drawn between the structural organization of the inter-BRCT linkers and the overall stability of the BRCT domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号