共查询到20条相似文献,搜索用时 0 毫秒
1.
Babu E Kanai Y Chairoungdua A Kim DK Iribe Y Tangtrongsup S Jutabha P Li Y Ahmed N Sakamoto S Anzai N Nagamori S Endou H 《The Journal of biological chemistry》2003,278(44):43838-43845
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters. 相似文献
2.
Prasad PD Wang H Huang W Kekuda R Rajan DP Leibach FH Ganapathy V 《Biochemical and biophysical research communications》1999,255(2):283-288
We report here on the cloning and functional characterization of human LAT1, a subunit of the amino acid transport system L. The hLAT1 cDNA, obtained from a human placental cDNA library, codes for a protein of 507 amino acids. When functionally expressed in mammalian cells together with the heavy chain of the rat 4F2 antigen (r4F2hc), hLAT1 induces the transport of neutral amino acids. When expressed independently, neither hLAT1 nor r4F2hc was capable of amino acid transport to any significant extent. Thus, the hLAT1-r4F2hc heterodimeric complex is responsible for the observed amino acid transport. The transport process induced by the heterodimer is Na+ independent and is not influenced by pH. It recognizes exclusively neutral amino acids with high affinity. LAT1-specific mRNA is expressed in most human tissues with the notable exception of the intestine. 相似文献
3.
We isolated two cDNAs from the mosquito Aedes aegypti, an L-amino acid transporter (AeaLAT) and a CD98 heavy chain (AeaCD98hc). Expression of AeaCD98hc or AeaLAT alone in Xenopus oocyte did not induce amino acid transport activity. However, co-expression of AeaCD98hc and AeaLAT, which are postulated to form a heterodimer protein linked through a disulfide bond, showed significant increase in amino acid transport activity. This heterodimeric protein showed uptake specificity for large neutral and basic amino acids. Small acidic neutral amino acids were poor substrates for this transporter. Neutral amino acid (leucine) uptake activity was partially Na+ dependent, because leucine uptake was approximately 44% lower in the absence of Na+ than in its presence. However, basic amino acid (lysine) uptake activity was completely Na+ independent at pH of 7.4. Extracellular amino acid concentration could be the main factor that determined amino acid transport. These results suggest the heteromeric protein is likely a uniporter mediating diffusion of amino acids in the absence of ions. The AeaLAT showed high level expression in the gastric caeca, Malpighian tubules and hindgut of larvae. In caeca and hindgut expression was in the apical cell membrane. However, in Malpighian tubules and in midgut, the latter showing low level expression, the transporter was detected in the basolateral membrane. This expression profile supports the conclusion that this AeaLAT is a nutrient amino acid transporter. 相似文献
4.
LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine 总被引:15,自引:0,他引:15
Rossier G Meier C Bauch C Summa V Sordat B Verrey F Kühn LC 《The Journal of biological chemistry》1999,274(49):34948-34954
Glycoprotein-associated amino acid transporters (gpaAT) are permease-related proteins that require heterodimerization to express their function. So far, four vertebrate gpaATs have been shown to associate with 4F2hc/CD98 for functional expression, whereas one gpaAT specifically associates with rBAT. In this study, we characterized a novel gpaAT, LAT2, for which mouse and human cDNAs were identified by expressed sequence tag data base searches. The encoded ortholog proteins are 531 and 535 amino acids long and 92% identical. They share 52 and 48% residues with the gpaATs LAT1 and y(+)LAT1, respectively. When mouse LAT2 and human 4F2hc cRNAs were co-injected into Xenopus oocytes, disulfide-linked heterodimers were formed, and an L-type amino acid uptake was induced, which differed slightly from that produced by LAT1-4F2hc: the apparent affinity for L-phenylalanine was higher, and L-alanine was transported at physiological concentrations. In the presence of an external amino acid substrate, LAT2-4F2hc also mediated amino acid efflux. LAT2 mRNA is expressed mainly in kidney and intestine, whereas LAT1 mRNA is expressed widely. Immunofluorescence experiments showed colocalization of 4F2hc and LAT2 at the basolateral membrane of kidney proximal tubules and small intestine epithelia. In conclusion, LAT2 forms with LAT1 a subfamily of L-type gpaATs. We propose that LAT1 is involved in cellular amino acid uptake, whereas LAT2 plays a role in epithelial amino acid (re)absorption. 相似文献
5.
Matsuo H Kanai Y Kim JY Chairoungdua A Kim DK Inatomi J Shigeta Y Ishimine H Chaekuntode S Tachampa K Choi HW Babu E Fukuda J Endou H 《The Journal of biological chemistry》2002,277(23):21017-21026
We identified a novel Na(+)-independent acidic amino acid transporter designated AGT1 (aspartate/glutamate transporter 1). AGT1 exhibits the highest sequence similarity (48% identity) to the Na(+)-independent small neutral amino acid transporter Asc (asc-type amino acid transporter)-2 a member of the heterodimeric amino acid transporter family presumed to be associated with unknown heavy chains (Chairoungdua, A., Kanai, Y., Matsuo, H., Inatomi, J., Kim, D. K., and Endou, H. (2001) J. Biol. Chem. 276, 49390-49399). The cysteine residue responsible for the disulfide bond formation between transporters (light chains) and heavy chain subunits of the heterodimeric amino acid transporter family is conserved for AGT1. Because AGT1 solely expressed or coexpressed with already known heavy chain 4F2hc (4F2 heavy chain) or rBAT (related to b(0,+)-amino acid transporter) did not induce functional activity, we generated fusion proteins in which AGT1 was connected with 4F2hc or rBAT. The fusion proteins were sorted to the plasma membrane and expressed the Na(+)-independent transport activity for acidic amino acids. Distinct from the Na(+)-independent cystine/glutamate transporter xCT structurally related to AGT1, AGT1 did not accept cystine, homocysteate, and l-alpha-aminoadipate and exhibited high affinity to aspartate as well as glutamate, suggesting that the negative charge recognition site in the side chain-binding site of AGT1 would be closer to the alpha-carbon binding site compared with that of xCT. The AGT1 message was predominantly expressed in kidney. In mouse kidney, AGT1 protein was present in the basolateral membrane of the proximal straight tubules and distal convoluted tubules. In the Western blot analysis, AGT1 was detected as a high molecular mass band in the nonreducing condition, whereas the band shifted to a 40-kDa band corresponding to the AGT1 monomer in the reducing condition, suggesting the association of AGT1 with other protein via a disulfide bond. The finding of AGT1 and Asc-2 has established a new subgroup of the heterodimeric amino acid transporter family whose members associate not with 4F2hc or rBAT but with other unknown heavy chains. 相似文献
6.
LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120 kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35 kDa) or CD98(80 kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [3H]His transport inhibited by hydrophobic amino acids. Antiport of [3H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [3H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [3H]Leu and [3H]Gln with respect to [3H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy. 相似文献
7.
Boado RJ Li JY Chu C Ogoshi F Wise P Pardridge WM 《Biochimica et biophysica acta》2005,1715(2):104-110
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56+/-0.11 microM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane. 相似文献
8.
Ruben J. Boado Chun Chu Fumio Ogoshi Petra Wise William M. Pardridge 《生物化学与生物物理学报:生物膜》2005,1715(2):104-110
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56 ± 0.11 μM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane. 相似文献
9.
Hongmin Zhen Koichi Nakamura Yasuyuki Kitaura Yoshihiro Kadota Takuya Ishikawa Yusuke Kondo 《Bioscience, biotechnology, and biochemistry》2013,77(12):2057-2062
Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action. 相似文献
10.
《Biophysical journal》2022,121(23):4476-4491
The human L-type amino acid transporter 1 (LAT1; SLC7A5) is a membrane transporter of amino acids, thyroid hormones, and drugs such as the Parkinson’s disease drug levodopa (L-Dopa). LAT1 is found in the blood-brain barrier, testis, bone marrow, and placenta, and its dysregulation has been associated with various neurological diseases, such as autism and epilepsy, as well as cancer. In this study, we combine metainference molecular dynamics simulations, molecular docking, and experimental testing, to characterize LAT1-inhibitor interactions. We first conducted a series of molecular docking experiments to identify the most relevant interactions between LAT1’s substrate-binding site and ligands, including both inhibitors and substrates. We then performed metainference molecular dynamics simulations using cryoelectron microscopy structures in different conformations of LAT1 with the electron density map as a spatial restraint, to explore the inherent heterogeneity in the structures. We analyzed the LAT1 substrate-binding site to map important LAT1-ligand interactions as well as newly described druggable pockets. Finally, this analysis guided the discovery of previously unknown LAT1 ligands using virtual screening and cellular uptake experiments. Our results improve our understanding of LAT1-inhibitor recognition, providing a framework for rational design of future lead compounds targeting this key drug target. 相似文献
11.
Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder 总被引:7,自引:0,他引:7
Bröer A Klingel K Kowalczuk S Rasko JE Cavanaugh J Bröer S 《The Journal of biological chemistry》2004,279(23):24467-24476
Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder. 相似文献
12.
Do Kyung Kim Yoshikatsu Kanai Hye Won ChoiSahatchai Tangtrongsup Arthit ChairoungduaEllappan Babu Kittipong TachampaNaohiko Anzai Yuji IribeHitoshi Endou 《生物化学与生物物理学报:生物膜》2002,1565(1):112-122
System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]l-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]l-leucine by T24 cells is Na+-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]l-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]l-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]l-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]l-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1. 相似文献
13.
Kim DK Kanai Y Choi HW Tangtrongsup S Chairoungdua A Babu E Tachampa K Anzai N Iribe Y Endou H 《Biochimica et biophysica acta》2002,1565(1):112-121
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1. 相似文献
14.
Desforges M Lacey HA Glazier JD Greenwood SL Mynett KJ Speake PF Sibley CP 《American journal of physiology. Cell physiology》2006,290(1):C305-C312
The system A amino acid transporter is encoded by three members of the Slc38 gene family, giving rise to three subtypes: Na+-coupled neutral amino acid transporter (SNAT)1, SNAT2, and SNAT4. SNAT2 is expressed ubiquitously in mammalian tissues; SNAT1 is predominantly expressed in heart, brain, and placenta; and SNAT4 is reported to be expressed solely by the liver. In the placenta, system A has an essential role in the supply of neutral amino acids needed for fetal growth. In the present study, we examined expression and localization of SNAT1, SNAT2, and SNAT4 in human placenta during gestation. Real-time quantitative PCR was used to examine steady-state levels of system A subtype mRNA in early (6-10 wk) and late (10-13 wk) first-trimester and full-term (38-40 wk) placentas. We detected mRNA for all three isoforms from early gestation onward. There were no differences in SNAT1 and SNAT2 mRNA expression with gestation. However, SNAT4 mRNA expression was significantly higher early in the first trimester compared with the full-term placenta (P < 0.01). We next investigated SNAT4 protein expression in human placenta. In contrast to the observation for gene expression, Western blot analysis revealed that SNAT4 protein expression was significantly higher at term compared with the first trimester (P < 0.05). Immunohistochemistry and Western blot analysis showed that SNAT4 is localized to the microvillous and basal plasma membranes of the syncytiotrophoblast, suggesting a role for this isoform of system A in amino acid transport across the placenta. This study therefore provides the first evidence of SNAT4 mRNA and protein expression in the human placenta, both at the first trimester and at full term. 相似文献
15.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle. 相似文献
16.
17.
Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity. 总被引:1,自引:0,他引:1
We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20. 相似文献
18.
《Bioscience Hypotheses》2008,1(2):109-111
Maintenance of the amino acids (AAs) levels within the central nervous system (CNS) is of importance for the formation of neurotransmitters. Alterations of the l-tryptophan and l-tyrosine (precursors of serotonin and dopamine, respectively) in brain parenchyma may result in serious CNS disorders such as depression. Malfunction of the system L (in particular LAT1/4F2hc) transporter can result in inevitable fluctuation of the large neutral amino acids (NAAs). From our preliminary mutation detection analyses, we hypothesize that the light chain LAT1 (SLC7A5) polymorphisms may change functionality of the system L resulting in fluctuation of key large NAAs levels in CNS. Also, mutations in 4F2hc (SLC3A2), the heavy chain of various AAs transporters, may alter the functions of some key transporters and cause changes in AAs concentrations of the brain. If proven, this hypothesis would grant new insights in molecular biology of the large neutral amino acid transporters in relevance to CNS disorders. 相似文献
19.
Identification of a novel amino acid, o-bromo-L-phenylalanine, in egg-associated peptides that activate spermatozoa 总被引:1,自引:0,他引:1
K Yoshino T Takao M Suhara T Kitai H Hori K Nomura M Yamaguchi Y Shimonishi N Suzuki 《Biochemistry》1991,30(25):6203-6209
Eight sperm-activating peptides containing a novel amino acid were isolated from the egg jelly of the sea urchin Tripneustes gratilla. Accurate mass measurement of the peptide in FAB mass spectrometry showed that the mass of the novel amino acid residue was 224.978. On the basis of the isotopic ion distribution and the degree of unsaturation, the mass value indicated that the elemental composition of the amino acid residue was C9H8O1N1Br1, suggesting that the novel amino acid was bromophenylalanine. Proton NMR spectroscopy, amino acid analysis, and RP-HPLC with three synthetic isomers of bromophenylalanine demonstrated that o-bromophenylalanine was the novel amino acid. Derivatization of the amino acid with Marfey's reagent, (1-fluoro-2,4-dinitrophen-5-yl)-L-alanine amide (FDAA), further indicated that the amino acid was the L-isomer. In other sperm-activating peptides isolated from the egg jelly of the sea urchin, both m- and p-bromophenylalanines were discovered. The presence of m-bromophenylalanine has not been previously reported in natural products, while p-bromophenylalanine is found in theonellamide F, an antifungal bicyclic peptide from a marine sponge. 相似文献