首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donor T cells are able to effect a graft-vs-leukemia (GVL) response but also induce graft-vs-host disease (GVHD) after allogeneic bone marrow transplantation. We used an AKR leukemia murine transplant model, analogous to human acute lymphoblastic leukemia, in which donor T cells expressed a thymidine kinase suicide gene, to test whether separation of GVL and graft-vs-host (GVH) responses was feasible by selectively eliminating alloactivated donor T cells at defined time points posttransplant. Under experimental conditions where untreated mice could not be cured of disease without dying from GVHD, mice transplanted with thymidine kinase-positive T cells and subsequently administered ganciclovir (GCV) could eliminate leukemia without lethal GVHD. Timing of GCV administration, donor T cell dose, and preexisting leukemia burden were observed to be critical variables. Eradication of leukemia without lethal GVHD in GCV-treated mice implied that the kinetics of GVL and GVH responses were asynchronous and could therefore be temporally dissociated by timely GCV administration. That this strategy was feasible in a murine leukemia model in which GVHD and GVL reactivity are tightly linked suggests that this approach may be relevant to the treatment of selected human leukemias where similar constraints exist. This strategy represents an alternative approach to separating GVL and GVH reactivity and challenges the current paradigm that separation of these responses is dependent upon the administration of donor T cells with restricted specificity for leukemia as opposed to host Ags.  相似文献   

2.
We have tested the effect of alkaloids (cocaine, morphine) and enkephalins on neutral endopeptidase of peripheral blood mononuclear cells activated by lectins. When treated with concanavalin A and cocaine, peripheral blood mononuclear cells showed an enhanced activity (+110 per cent) of the membrane neutral endopeptidase, which was not related to the expression of the common acute lymphoblastic leukemia antigen at the cell surface, although both molecules have the identical amino acid sequence. Phytohemagglutinin-P, morphine and synthetic enkephalins did not induce the activity of neutral endopeptidase nor the expression of common acute lymphoblastic leukemia antigen. Our findings suggested that the drugs of abuse, cocaine and morphine, affected specific membrane constituents without altering proliferation, subcellular localization of membrane enzymes or the surface immune phenotype of peripheral blood mononuclear cells.  相似文献   

3.
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.  相似文献   

4.
All cells examined from the non-B, non-T acute lymphoblastic leukemia cell line, NALL-1, stained positive both for terminal deoxynucleotidyl transferase and for common ALL antigen. In addition, peroxidase activity was detected by light microscopy in 55 to 75% of cells and peroxidase-positive granules were detected ultrastructurally in greater than 80% of cells. Peroxidase activity in NALL-1 may result from derepression of peroxidase genes or clonal proliferation of a biphenotypic precursor cell.  相似文献   

5.
Summary All cells examined from the non-B, non-T acute lymphoblastic leukemia cell line, NALL-1, stained positive both for terminal deoxynucleotidyl transferase and for common ALL antigen. In addition, peroxidase activity was detected by light microscopy in 55 to 75% of cells and peroxidase-positive granules were detected ultrastructurally in >80% of cells. Peroxidase activity in NALL-1 may result from derepression of peroxidase genes or clonal proliferation of a biphenotypic precursor cell.  相似文献   

6.
Summary It is now widely accepted that immunocompetent lymphocytes in allogeneic bone marrow grafts exert an antileukemic effect that contributes to the cure of leukemia. Graft vs leukemia (GVL) effects independent of graft vs host disease were investigated in allogeneic bone marrow chimeras tolerant of host and donor alloantigens. The role of Thy1.2, L3T4 and Lyt2 T lymphocytes as effector cells of GVL were investigated in (BALB/c × C57BL/6)F1 mice inoculated with murine B-cell leukemia and subsequently conditioned with total lymphoid irradiation and cyclophosphamide (200 mg/kg). Mice were reconstituted with C57BL/6 bone marrow cells depleted of well-defined T-cell subsets or enriched for stem cells by the soybean agglutination method. Detection of residual tumor cells, an indicator for efficacy of GVL, was carried out by adoptive transfer of peripheral blood or spleen cells obtained from treated chimeras into secondary naive BALB/c recipients at different time intervals following bone marrow transplantation. Treatment of the primary marrow inoculum with monoclonal anti-Thy 1.2 or anti-Lyt2 abolished the GVL effects and all secondary BALB/c recipients developed leukemia within 60 days. On the other hand, the treatment with monoclonal anti-L3T4 did not influence the effect of GVL and all treated recipients remained without leukemia. The data suggest that T cells may mediate GVL effects in the absence of graft vs host disease and in circumstances where tolerance to conventional alloantigens is elicited. Effector cells of GVL across the major histocompatibility complex (MHC) in the murine B-cell leukemia tumor model system appear to be Thy 1.2+ Lyt2+ L3T4—. Induction of GVL effects by allogeneic cells tolerant of host MHC suggests that these effects may be independent of graft vs host disease.  相似文献   

7.
We have constructed somatic cell hybrids between the murine T cell line BW5147 and cells from patients suffering from T cell acute lymphoblastic leukemia. The obtained hybrid clones were analyzed for expression of human T cell antigens and presence of human chromosomes. T cell hybrids derived from fusion between the BW5147 cell line and bone marrow cells from a patient with pre-T acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1-/T6-/T4-/T8-/T3-) appeared to express the human T cell antigen Tp41, which can be recognized by the monoclonal antibodies 3A1 and WT1. Although this panel of hybrid cells contained all human chromosomes, no other T cell antigens were expressed. Fusion of the BW5147 cell line with peripheral blood cells from a patient with a more mature T cell acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1+/T6-/T4+/T8+/T3-) resulted in a panel of hybrid clones that expressed not only the Tp41 antigen, but also the human T cell antigens T1 and T4; two hybrids even expressed the T3 antigen. This panel of hybrids also contained the whole human genome. The two panels of human-mouse T cell hybrids allowed us to assign the genes coding for the human T cell antigens Tp41, T1, and T4 to human chromosomes 17, 11, and 12, respectively. Furthermore, these data support our previous suggestion that the expression of human lymphoid differentiation antigens in human-mouse lymphoid hybrids is influenced by the differentiation stage of the fusion partners.  相似文献   

8.
9.
10.
It is unclear whether autologous immunity could be recruited to restrict the progression of leukemia. Patients harboring leukemia commonly display suppressed cell mediated immunity, which may contribute to their inability to control the disease. Immune response against leukemia is evident in allogeneic HLA-mismatched bone marrow transplantation, implicating the involvement of NK cells. This graft-versus-leukemia (GVL) activity suggests that, if not suppressed, an autologous NK cell response could potentially control acute leukemia that had down-regulated HLA expression. In the current study we assessed the role of non-suppressed autologous NK cells in controlling a syngeneic highly malignant leukemia, the CRNK-16 line, that constitute a major cause of natural death in aged F344 rats. A minuscule dose of 60 CRNK-16 leukemia cells per rat was sufficient to induce 50% mortality rates, and animals that survived this challenge did not show improved survival upon a second challenge. The CRNK-16 line was found to exhibit low levels of MHC-I, and selective in vivo depletion of NK cells nullified in vitro NK activity against the CRNK-16 line and reduced survival rates from this leukemia. In vivo activation of NK cells, employing low doses of poly I-C or IL-12, increased in vitro NK activity against the leukemia and dramatically improved survival rates when treatment was initiated before, but not after leukemia inoculation. These results indicate the ability of competent autologous NK cells to restrict highly malignant non-immunogenic leukemia. Thereby, this model presents an opportunity to study specific in vivo NK-leukemia interactions.  相似文献   

11.
Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia, B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel therapeutic principle complementing our growing armature against malignancies and advocate the exploration of sulforaphane in a broader population of leukemic patients.  相似文献   

12.
Mice carrying the B cell leukemia (BCL1)+ were successfully treated by total lymphoid irradiation (TLI), cyclophosphamide, and allogeneic bone marrow (BM) transplantation. Long-term survivors were examined for residual BCL1 cells and for the ability to transfer adoptively graft vs. leukemia (GVL) activity. Residual BCL1 cells could not be detected in the allogeneic BM chimeras (greater than 14 to 16 months) with the use of indirect immunofluorescent staining with anti-idiotype antibody. However, residual tumor cells were present in 50% of the "cured" chimeric mice since adoptive transfer of 10(6) spleen cells from 50% of the treated chimeric mice caused leukemia in BALB/c recipients. In order to determine whether leukemia had been prevented in the "cured" chimeras by a persistent cell-mediated mechanism, BALB/c mice were injected with 10(6) spleen cells from the "cured" BM chimeras together with a dose of 10(2) or 5 x 10(5) BCL1 cells. Onset of leukemia was delayed or completely abolished in a significant proportion of recipients receiving the cell mixtures, suggesting the presence of anti-tumor immunity in the cured mice. The data suggest that a persistent active immune mechanism may be responsible, in part, for the significant antileukemic effects observed in mice tolerant to donor alloantigens.  相似文献   

13.
Summary Magnetic beads coupled with secondary monoclonal antibodies were used to remove cells expressing the common acute lymphoblastic leukemia antigen by adsorption. The influences of the bead-to-cell ratio, temperature and the amout of antibodies used on the effectiveness of the immunomagnetic cell isolation were studied.  相似文献   

14.
In diagnostic research challenges, quantitative real-time PCR (QPCR) has been widely utilized in gene expression analysis because of its sensitivity, accuracy, reproducibility, and most importantly, quantitativeness. Real-time PCR base kits are wildly applicable in cancer signaling pathways, especially in cancer investigations. T-cell acute lymphoblastic leukemia (T-ALL) is a type of leukemia that is more common in older children and teenagers. Deregulation of the Notch signaling pathway promotes proliferation and inhibits apoptosis of the lymphoblastic T cells. The aim of this study was to investigate the effect of Notch signaling activation on the expression of target genes using real-time QPCR and further use this method in clinical examination after validation. Two T-ALL cell lines, Jurkat and Molt-4, were used as models for activation of the Notch signaling via over-expression of the Notch1 intracellular domain. Expression analysis was performed for six downstream target genes (NCSTN, APH1, PSEN1, ADAM17, NOTCH1 and C-MYC) which play critical roles in the Notch signaling pathway. The results showed significant difference in the expression of target genes in the deregulated Notch signaling pathway. These results were also verified in 12 clinical samples bearing over-expression of the Notch signaling pathway. Identification of such downstream Notch target genes, which have not been studied inclusively, provides insights into the mechanisms of the Notch function in T cell leukemia, and may help identify novel diagnoses and therapeutic targets in acute lymphoblastic leukemia.  相似文献   

15.
bcr gene rearrangement and c-abl gene expression were analyzed in a patient with Philadelphia chromosome (Ph1)-positive hybrid acute leukemia with simultaneous proliferation of lymphoid and myeloid blasts. These data were compared with those from a patient with chronic myelogenous leukemia (CML) in mixed crisis. The leukemic cells of both patients showed immuno-phenotypic profiles such as non-T, non-B common ALL with some MPO-positive leukemic cells and rearranged JH genes. On analysis of molecular events associated with the Ph1 chromosome, the leukemic cells of a patient with CML in mixed crisis showed bcr rearrangement and an 8.5-kb bcr-abl chimeric mRNA, but those of a patient with Ph1-positive hybrid acute leukemia showed no 8.5-kb bcr-abl mRNA, as previously reported in a number of Ph1-positive acute lymphoblastic leukemia (ALL) cases. These results revealed that the molecular event found in Ph1-positive ALL is not only restricted to lymphoid lineage but may play an important role in the proliferation of the myeloid lineage.  相似文献   

16.
17.
The effect of linomide, an immunomodulatory drug, on natural killer (NK) cells and T cell-dependent immune responses following syngeneic or allogeneic bone marrow transplantation (BMT) was investigated in BALB/c mice inoculated with B-cell leukemia (BCL1). Linomide given in the drinking water had no impact on graft survival or graft versus leukemia (GVL) effects. Although linomide regulates anti-self reactivity in mice with experimental and spontaneous autoimmune disorders, the anti-tumor effects induced by allogeneic donor lymphocytes were not affected. This indicates that different mechanisms regulate anti-self and anti-leukemia effects. Alternatively, linomide might affect the homing of self-reactive lymphocytes to specific target organs in autoimmune disorders, although the homing process may not be relevant to the control of leukemia by alloreactive lymphocytes.  相似文献   

18.
The degree to which gene expression covaries between different primary tissues within an individual is not well defined. We hypothesized that expression that is concordant across tissues is more likely influenced by genetic variability than gene expression which is discordant between tissues. We quantified expression of 11,873 genes in paired samples of primary leukemia cells and normal leukocytes from 92 patients with acute lymphoblastic leukemia (ALL). Genetic variation at >500,000 single nucleotide polymorphisms (SNPs) was also assessed. The expression of only 176/11,783 (1.5%) genes was correlated (p<0.008, FDR = 25%) in the two tissue types, but expression of a high proportion (20 of these 176 genes) was significantly related to cis-SNP genotypes (adjusted p<0.05). In an independent set of 134 patients with ALL, 14 of these 20 genes were validated as having expression related to cis-SNPs, as were 9 of 20 genes in a second validation set of HapMap cell lines. Genes whose expression was concordant among tissue types were more likely to be associated with germline cis-SNPs than genes with discordant expression in these tissues; genes affected were involved in housekeeping functions (GSTM2, GAPDH and NCOR1) and purine metabolism.  相似文献   

19.
Summary Leukemic cells with reciprocal translocations involving 11p13 and 14q13 were obtained from two patients with T-cell acute lymphoblastic leukemia and fused with mouse Ltk- cells. DNA from independent hybrid clones was screened by Southern blot and hybridization to molecular probes for the human catalase and Ha-ras-1 genes. Several clones showed segregation of these two genes, indicating the presence of either the der 11 or der 14 human chromosomes. When DNA from these hybrid clones was examined for the presence of the human genes for calcitonin and γ-globin, both genes were found to segregate with the Ha-ras-1 gene and the der14 chromosome indicating that they lie distal to catalase. When the hybrid clones were examined for the presence of human lactate dehydrogenase A (LDH A) activity, only those clones containing the der14 chromosome expressed activity indicating that the LDH A gene is also distal to catalase on the short arm of chromosome 11.  相似文献   

20.
A new human acute lymphoblastic leukemia (ALL) cell line, designated HBL-3, was established from the bone marrow of a patient with non-T-ALL. The HBL-3 cell line expressed B4 (CD 19), BA-1 (CD 24) and HLA-DR antigens, but not surface immunoglobulin (SIg) or cytoplasmic immunoglobulin (CIg). The cell line lacked the common acute lymphoblastic leukemia antigen (CALLA) and antigenic markers characteristic of T-cell and myeloid cell lineages. The HBL-3 cells had structural rearrangements of both the homologous chromosome 9s, including a translocation with chromosome 1 which has been reported in a patient with common ALL. The cell line had rearranged immunoglobulin heavy chain genes but retained germ-line kappa light chain genes and germ-line T-cell receptor beta- and gamma-chain genes. The HBL-3 cell line was strongly positive for terminal deoxynucleotidyl transferase (TdT). These findings indicate that the HBL-3 cell line is derived from the earliest B-cell committed to B-cell lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号