首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
玉米是杂种优势利用最成功的作物之一,采用细胞质雄性不育(CMS)进行玉米杂交种生产已成为杂种优势利用的有力工具。CMS是由于细胞质和细胞核的基因表达产物的不协调而产生的不育性,可被核基因组中的恢复基因恢复。根据育性恢复专效性,玉米CMS材料主要分为T、C和S三种类型。综述了这三种类型不育及其恢复基因的研究进展,分析了在不育化制种中的应用情况。  相似文献   

2.
We have demonstrated that sorghum DNA sequences of mitochondrial origin can be used to distinguish different male-sterility-inducing cytoplasms. Six DNA clones containing single-copy mitochondrial sequences were hybridized on Southern blots to restriction enzyme-digested DNA of 28 sorghum lines representing sources of different cytoplasmic male-sterility (CMS) groups. Four cytoplasmic types were defined on the basis of the pattern of DNA fragments detected. Similar analyses of 50 additional diverse sorghum accessions suggested that three of the four cytoplasmic types may be diagnostic for CMS. Also, three other cytoplasmic types were discovered. These and other mitochondrial DNA clones may be useful molecular tools for “fingerprinting” sterility-inducing cytoplasms in breeding programs, determining cytoplasmic diversity among germ plasm accessions, and identifying new sources of cytoplasm that induce male sterility.  相似文献   

3.
The Mmolecular-genetic polymorphism of 86 maize lines of world and Ukrainian breeding with S-, C- and T-types of cytoplasmic male sterility (CMS) and with wild-type mitochondra was studied by PCR analysis of mitochondrion regions. A molecular marker system was able to detect and identify a certain type of CMS in the maize lines and differentiate maize lines with a certain type of CMS from both lines with a different type of CMS and those with the wild-type cytoplasm.  相似文献   

4.
5.
Three types of sterile cytoplasm in cytoplasmic-male-sterility (CMS) maize, T, C and S, can be identified according to their fertility-restoration and mitochondrial DNA RFLP patterns. CMS-S, which is the least stable among the three types of CMS, is controlled by sterile cytoplasm interactions with certain nuclear-encoded factors. We constructed a high-resolution map of loci associated with male-restoration of CMS-S in BC1 populations of maize. The map covers 1730.29 cM, including 32 RFLP, 51 SSR 62 RAPD and 21 AFLP markers. Genome-wide QTL analysis detected 6 QTLs with significant effects on male fertility as assessed by their starch-filled pollen ratios. Four QTLs out of six were located between the SSR markers MSbnlg1633-Mrasg20, MSbnlg1662-Msume1126, MSume1230-MSumc1525, and RAPD marker MraopQ07-2-MraopK06-2 on chromosome 2. Two other minor loci were mapped between MraopK16-1-Mraopi4-1, on chromosome 9, and between Msuncbnlg1139-MraopR10-2, on chromosome 6. The Rf3 nuclear restoring gene was precisely located on the chromosome 2, 2.29 cM to the left of umc1525 and 8.9 cM to the right of umc1230. The results provide important markers for marker-assisted selection of stable CMS-S maize.  相似文献   

6.
Molecular-genetic polymorphism of 86 world and Ukrainian breeding maize lines with S-, C- and T-types of cytoplasmic male sterility (CMS) and with normal wild type mitochondrion has been researched via mitochondrion regions PCR-analysis. Molecular marker system allowed to detect and identify definite type of CMS within maize lines, as well as to differentiate lines with definite CMS type either from lines with another CMS type or from normal wild type cytoplasm lines.  相似文献   

7.
Gynodioecy, the coexistence of hermaphrodites and females (i.e. male-sterile plants) in natural plant populations, most often results from polymorphism at genetic loci involved in a particular interaction between the nuclear and cytoplasmic genetic compartments (cytonuclear epistasis): cytoplasmic male sterility (CMS). Although CMS clearly contributes to the coevolution of involved nuclear loci and cytoplasmic genomes in gynodioecious species, the occurrence of CMS genetic factors in the absence of sexual polymorphism (cryptic CMS) is not easily detected and rarely taken in consideration. We found cryptic CMS in the model plant Arabidopsis thaliana after crossing distantly related accessions, Sha and Mr-0. Male sterility resulted from an interaction between the Sha cytoplasm and two Mr-0 genomic regions located on chromosome 1 and chromosome 3. Additional accessions with either nuclear sterility maintainers or sterilizing cytoplasms were identified from crosses with either Sha or Mr-0. By comparing two very closely related cytoplasms with different male-sterility inducing abilities, we identified a novel mitochondrial ORF, named orf117Sha, that is most likely the sterilizing factor of the Sha cytoplasm. The presence of orf117Sha was investigated in worldwide natural accessions. It was found mainly associated with a single chlorotype in accessions belonging to a clade predominantly originating from Central Asia. More than one-third of accessions from this clade carried orf117Sha, indicating that the sterilizing-inducing cytoplasm had spread in this lineage. We also report the coexistence of the sterilizing cytoplasm with a non-sterilizing cytoplasm at a small, local scale in a natural population; in addition a correlation between cytotype and nuclear haplotype was detected in this population. Our results suggest that this CMS system induced sexual polymorphism in A. thaliana populations, at the time when the species was mainly outcrossing.  相似文献   

8.
Spontaneous mutations leading to male sterility have been described for many different crops and are of great importance to hybrid breeding, provided that their inheritance is resolved. This paper describes an efficient method to characterise male sterilities with respect to cytoplasmic factors that might be causally related to them. The differentiation of cytoplasmic (CMS) and genic (GMS) male sterility is achieved by a specific transfer of nuclear male sterility factors to different cytoplasm types which have previously been distinguished by means of RFLP analyses using mitochondrial gene probes. The nuclear sterility factors of Allium schoenoprasum used, st1 and st2, showed a monogenic recessive inheritance in their original cytoplasms. While st1 was expressed in four different cytoplasm types, st2 did not show itself in a cytoplasm type differing from the original. Therefore, the st1-sterility is a GMS, while a cytoplasmic factor is necessary for the occurrence of st2-sterility. This cytoplasmic factor was verified by a reciprocal cross, and the CMS system was completed by the selection of maintainer genotypes. Neither of these new sterilities were influenced by high temperatures or tetracycline. The benefits of a new CMS system to practical breeding and the advantages and disadvantages of the environmental influences on the expression of male sterility are discussed. Received: 24 November 1999 / Accepted: 3 December 1999  相似文献   

9.
雄性不育是农作物利用杂种优势、进行轮回选择和群体改良的重要手段,在农作物生产中具有巨大的利用价值。该研究为了鉴定青花菜细胞质雄性不育材料的不育胞质类型,以期今后为青花菜种质资源的收集、利用及分子标记辅助育种提供新的不育标记。根据Gen Bank中orf138基因保守序列设计特异引物,对20个青花菜种质资源基因组DNA进行PCR扩增。结果表明:特异引物P1/P2在12个青花菜雄性不育基因型中均扩增出392 bp的片段,在8个可育基因型中未扩增出条带,与田间育性鉴定结果相符。获得青花菜Ogu胞质雄性不育的特异基因orf138序列,Gen Bank中的登录号为HQ149728;用Blastn在Gen Bank中进行同源性比对分析,发现12个不育材料的特异片段与已报道的萝卜Ogu CMS所具有的Ogu orf138基因(Genbank登录号:Z18896.1)同源度高达100%。序列同源比对发现orf138基因存在变异位点。研究结果可为青花菜雄性不育细胞质的分子鉴定、进一步阐明胞质雄性不育败育机理,以及指导青花菜新型不育系的创建和杂种优势高效利用提供理论依据。  相似文献   

10.
11.
12.
玉米S组细胞质雄性不育线粒体R区序列与多型性分析   总被引:6,自引:1,他引:5  
张方东  郑用琏 《遗传学报》2000,27(9):824-833
玉米S组细胞难性不育(CMS)可能与线粒体基因组中的R区域有关。对不同核背景下唐徐、双2种S胞质的线粒体DNA以R区特异探针的Southern分析发现均有6.7kb、4.5kb、1.8kb的3条谱带,分别对应于2种位于线粒体基因组中间的类型和1个线性末端,并且核背景对这3种不同形式的R区域的量有影响。对Mo17和77核背景下N、T、C4种胞质17种材料的玉米线粒体基因组中R区的Southern分析  相似文献   

13.
玉米S型细胞质雄性不育系(CMS-S)及其近等基因恢复系是研究核 质互作机制的重要遗传资源和理想模式体系.目前认为,CMS-S花粉败育是由其线粒体内细胞质不育基因orf355-orf77表达的毒性蛋白引起,而核育性恢复基因Rf3可通过引发orf355-orf77转录本的降解而解除其毒性作用,使花粉育性得以恢复.本研究采用Northern杂交和3′-RACE技术确定了orf355-orf77转录本的剪切位点,并发现在育性恢复的花粉中,orf355-orf77转录本被剪切成小片段之后聚合了poly(A)序列,推测这一过程加速了mRNA分子的降解,是育性恢复的关键环节.利用生物信息学方法分析了orf355-orf77转录本6个剪切位点的侧翼序列,发现在剪切位点下游10个碱基的位置均含有5′-CCACA-3′序列,推测该序列受到特定功能蛋白的识别,然后募集核酸内切酶对其进行剪切.研究结果可为揭示玉米CMS S育性恢复机理提供重要的理论依据.  相似文献   

14.
In this study, we have investigated the cytoplasmic male sterility (CMS) of a novel male sterile radish line, designated NWB CMS. The NWB CMS was crossed with 16 fertile breeding lines, and all the progenies were completely male sterile. The degree of male sterility exhibited by NWB CMS is more than Ogura CMS from the Cruciferae family. The NWB CMS was found to induce 100% male sterility when crossed with all the tested breeding lines, whereas the Ogura CMS did not induce male sterility with any of the breeding lines. PCR analysis revealed that the molecular factor that influenced Ogura CMS, the orf138 gene, was absent in the NWB CMS line, and that the orf138 gene was not also expressed in this CMS line. In order to identify the cytoplasmic factors that confer male sterility in the NWB CMS line, we carried out RFLP analyses with 32 mitochondrial genes, all of which were used as probes. Fourteen genes exhibited polymorphisms between the NWB CMS line and other radish cultivars. Based on these RFLP data, intergenic primers were developed in order to amplify the intergenic regions between the polymorphic genes. Among these, a primer pair at the 3′ region of the atp6 gene (5′-cgcttggactatgctatgtatga-3′) and the 5′ region of the nad3 gene (5′-tcatagagaaatccaatcgtcaa-3′) produced a 2 kbp DNA fragment as a result of PCR. This DNA fragment was found to be specific to NWB CMS and was not present in other CMS types. It appears that this fragment could be used as a DNA marker to select NWB CMS line in a radish-breeding program.  相似文献   

15.
Moderate stimuli in mitochondria improve wideranging stress adaptability in animals, but whether mitochondria play similar roles in plants is largely unknown. Here, we report the enhanced stress adaptability of S-type cytoplasmic male sterility(CMS-S) maize and its association with mild expression of sterilizing gene ORF355. A CMS-S maize line exhibited superior growth potential and higher yield than those of the near-isogenic N-type line in saline fields. Moderate expression of ORF355 induced t...  相似文献   

16.
Common wheat (Triticum aestivum L.) is one of the most important crops,and intra-specific wheat hybrids have obvious heterosis in yield and protein quality.Therefore,utilization of hybrid wheat varieties offers an effective way to increase yield and nutrition.Cytoplasmic male sterility (CMS) systems are a useful genetic tool for hybrid crop breeding,and are ideal models for studying the genetic interaction and cooperative function of mitochondrial and nuclear genomes in plants (Schnable and Wise,1998;Hanson and Bentolila,2004).The breeding of hybrid wheat using male sterility caused by the cytoplasm of T.timopheevii has been studied since the early 1960's.But it is unsuccessful because there are some deficiencies in the practical application of this cytoplasm,including limited restoration resources,thin seeds,pre-harvest sprouting and lower germination rate (Wilson and Ross,1962).The Sv type of cytoplasmic male sterility (CMS-Sv) in wheat is general accessions for four types of CMS lines that were derived from four Aegilops species:Ae.kotschyi,Ae.variabilis,Ae.ventricosa,and Ae.bicornis.Based on the observation of alloplasmic lines produced in all possible combinations between 12 wheat nuclear genotypes and 47 cytoplasms of two related genera,Triticum (wheat) and Aegilops,Ogihara and Tsunewaki (1988) concluded that the D2-cytoplasm of Ae.crassa and its relatives,N-cytoplasm of Ae.uniaristata,and SV-cytoplasm of Ae.kotschyi and its relatives might be used as the alternative male sterile cytoplasm to replace the T.timopheevii cytoplasm for hybrid wheat breeding.Ikeguchi et al.(1999) proposed that spring-type hybrid wheat may be bred by combination of the 1BL-1RS chromosome and Ae.kotschyi cytoplasm with a new fertility-restorer gene discovered in a wheat variety Kitamiharu 48.Zhang et al.(1996) also proposed the use of CMS-Sv lines as the most effective male sterile cytoplasm.  相似文献   

17.
Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F1 hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F1 hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS “three-line” breeding, selection and validation of hybrid rapeseed.  相似文献   

18.
Cytoplasmic male sterility (CMS) and its fertility restoration (Rf) genes are critical tools for hybrid seed production to utilize heterosis. In sunflower, CMS PET1 and the associated Rf gene Rf (1) is the only source extensively used in commercial hybrid production. The objective of this research was to develop new sources of CMS and fertility restorers to broaden the genetic diversity of hybrid seed production. We identified a new type of CMS, named as CMS GIG2, from an interspecific cross between Helianthus giganteus accession1934 and H. annuus cv. HA 89. Based on reactions to a set of standard Rf testers, CMS GIG2 is different from all previously reported CMS types, including the CMS GIG1 from another H. giganteus accession. We also identified an Rf gene for CMS GIG2 from wild species H. maximiliani accession 1631. The CMS GIG2 and its restoration gene were introduced into HA 89 background through recurrent backcross and single plant selection techniques. Genetic analysis revealed that the CMS GIG2-Rf system is controlled by a completely dominant gene, named as Rf (4), and the gene additive and dominance effects were estimated as 39.9 and 42.2%, respectively, in the HA 89 background. The gene Rf (4) was mapped onto linkage group 3 with simple sequence repeat (SSR) markers and RFLP-derived STS-marker, and is about 0.9 cM away from the SSR marker ORS1114 based on a segregation population of 933 individuals. The CMS GIG2-Rf (4) system tagged by molecular markers provides an alternative genetic source for hybrid breeding in the sunflower crop.  相似文献   

19.
RFLP Analysis for Mitochondrial Genome of CMS-Rice   总被引:2,自引:0,他引:2  
Restriction fragment length polymorphism (RFLP) was used to analyze mitochondrial (mt) genome of cytoplasmic male sterility (CMS) rice. Differences were observed among mitochondrial genomes of the sterile line (A) and maintain line (B) of nine types of CMS rice; Mitochondrial genomic differences were also detected between A and B in many functional gene regions. Even the materials with the same nucleic background have differences in their mtDNA. This provides molecular evidence for the cytoplasmic heterogeneity and the CMS mechanism research.  相似文献   

20.
Hybrid-onion (Allium cepa) seed is produced using systems of cytoplasmic-genic male sterility (CMS). Two different sources of CMS (S and T cytoplasms) have been genetically characterized. Testcrosses of N-cytoplasmic maintaining and restoring genotypes to S and T cytoplasmic lines demonstrated that different alleles, or loci, restore male fertility for these two male-sterile cytoplasms. Other sources of CMS have been used or reported in Europe, Japan and India, and their relationships to S and T cytoplasms are not clear. Restriction fragment length polymorphisms were identified in the organellar genomes among commercially used male-sterile cytoplasms from Holland, Japan and India, and were compared to S and T cytoplasms. Mitochondrial DNA diversity among 58 non-S-cytoplasmic open-pollinated onion populations was also assessed. All five putative CMS lines selected from the Indian population Nasik White Globe were identical to S cytoplasm for all polymorphisms in the chloroplast genome, and always possessed the same-sized mitochondrial fragments as S cytoplasm. T cytoplasm, the male-sterile cytoplasm used to produce the Dutch hybrid Hygro F1, and two sources of CMS from Japan, were similar and showed numbers of mitochondrial polymorphisms similar to those observed among the 58 non-S-cytoplasmic open-pollinated populations. This research demonstrates that the same, or very similar, male-sterile cytoplasms have been independently isolated and exploited for hybrid-seed production in onion. Received: 27 October 1999 / Accepted: 12 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号