首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
烯醇酶(enolase)是糖酵解途径中的一个重要酶类,它能够催化磷酸甘油酸酯(2-PGA)生成磷酸烯醇丙酮酸酯(PEP)。我们通过RACE-PCR方法从油菜(Brassica napus L. )中克隆到了编码烯醇酶的全长基因。序列分析表明该基因全长cDNA为1624bp,拥有一个由444个氨基酸组成的开放读码框,所编码的蛋白质分子量为47.38kD,等电点为5.78。比较发现,油菜烯醇酶与已分离出的其他烯醇酶氨基酸序列有较高的同源性。Southern杂交结果显示烯醇酶以低拷贝形式在油菜基因组中存在。RT-PCR和Northern分析表明烯醇酶基因在100mmol/L盐浓度胁迫条件下表达量上升,而在低温诱导时表达量下降。该研究表明所克隆基因是植物烯醇酶基因家族的新成员。  相似文献   

2.
An enolase-encoding cDNA clone in oilseed rape (Brassica napus L.) was isolated. This gene (accession number: AY307449) had a total length of 1 624 bp with an open reading frame of 1 335 bp, and encoded a predicted polypeptide of 444 amino acids with a molecular weight of 47.38 kD. The deduced amino acid sequence shared identity with a number of enolases ranging from Bacillus subtilis to human beings and had much higher identity with other plant enolases than with enolases from Bacillus, yeast and human beings. Comparison of its primary structure with those of other enolases revealed the presence of an insertion of five amino acids in enolase of B. napus. Southern blotting analysis of genomic DNA indicated that enolase was likely to be a low-copy gene in the oilseed rape genome. Expression of the cloned enolase gene increased under salt stress, but decreased in response to low temperature. Our studies suggested that the cloned gene was a new member of plant enolase gene family, which contributed to the energy supply in stress-treated tissues.  相似文献   

3.
烯醇酶(enolase)是糖酵解途径中的一个重要酶类,它能够催化磷酸甘油酸酯(2-PGA)生成磷酸烯醇丙酮酸酯(PEP).我们通过RACE-PCR方法从油菜(Brassica napus L.)中克隆到了编码烯醇酶的全长基因.序列分析表明该基因全长cDNA为1 624bp,拥有一个由444个氨基酸组成的开放读码框,所编码的蛋白质分子量为47.38 kD,等电点为5.78.比较发现,油菜烯醇酶与已分离出的其他烯醇酶氨基酸序列有较高的同源性.Southern杂交结果显示烯醇酶以低拷贝形式在油菜基因组中存在.RT-PCR和Northern分析表明烯醇酶基因在100 mmol/L盐浓度胁迫条件下表达量上升,而在低温诱导时表达量下降.该研究表明所克隆基因是植物烯醇酶基因家族的新成员.  相似文献   

4.
5.
The full-length enolase-encoding cDNA was cloned from cotton (Gossypium barbadense). This gene (GenBank Accession No.: AY297757) had a total length of 1580 bp with an open reading frame of 1338 bp and encoded a predicted polypeptide of 445 amino acid residues with a molecular weight of 47.73 kD. Comparison of it primary structure with those of other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acid residues unique to higher plant enolases. Southern blotting analysis of genomic DNA indicated enolase was likely to be a low-copy gene in the cotton genome. The enolase gene was induced in response to submergence, ABA, salt and high temperature stress. Our studies suggested that the cloned gene was a new member of plant enolase gene family, which contributed to the energy supply in stress-treated tissues.  相似文献   

6.
We report the crystal structure of an enolase from Enterococcus hirae, which is the first report of a structure determination among gram-positive bacteria. We isolated the enolase gene and determined the base sequence. The amino acid sequence deduced from the DNA sequence suggests that this enolase is composed of 431 amino acids. The amino acid sequence is very similar to those of enolases from eukaryotic and prokaryotic organisms, being 65% and 50% identical to enolases from Escherichia coli and yeast, respectively. The enolase prepared from E. hirae lysate yielded crystals containing one dimer per asymmetric unit. X-ray diffraction patterns were obtained at 2.8 A resolution on a SPring-8 synchrotron radiation source. Crystals belong to space group I4 with unit cell dimensions of a = b = 153.5 A, c = 90.7 A. The E. hirae, yeast, E. coli and lobster enolase structures are very similar. The E. hirae enolase takes an "Open" conformation. The regions in the structure that differ most from other enolases are loops L4 (132-140) and L3 (244-265). Considering the positions of these loops relative to the active site, they seem to have no direct involvement in function. Our findings show that the three dimensional structure of an important enzyme in the glycolytic pathway is evolutionarily conserved among eukaryotes and prokaryotes, including gram-positive bacteria.  相似文献   

7.
8.
Natural rubber latex allergy is an IgE-mediated disease that is caused by proteins that elute from commercial latex products. A complementary DNA (cDNA) coding for Hev b 9, an enolase (2-phospho-D-glycerate hydrolyase) and allergen from latex of the rubber tree Hevea brasiliensis, was amplified by PCR. The PCR primers were designed according to conserved regions of enolases from plants. The obtained cDNA amplification product consisted of 1651 bp and encoded a protein of 445 amino-acid residues with a calculated molecular mass of 47.6 kDa. Sequence comparisons revealed high similarities of the Hevea latex enolase to mold enolases that have been identified as important allergens. In addition, the crucial amino-acid residues that participate in the formation of the catalytic site and the Mg2+ binding site of enolases were also conserved. Hevea latex enolase was produced as a recombinant protein in Escherichia coli with an N-terminal hexahistidyl tag, and purified by affinity chromatography. The yield amounted to 110 mg of purified Hev b 9 per litre of bacterial culture. The recombinant allergen bound IgE from latex, as well as mold-allergic patients, in immunoblot and ELISA experiments. The natural enolase was isolated from Hevea latex by (NH4)2SO4 precipitation and ion exchange chromatography. The natural and the recombinant (r)Hev b 9 showed equivalent enzymatic activity. Patients' IgE-antibodies preincubated with rHev b 9 lost their ability to bind to natural (n) Hev b 9, indicating the identity of the B-cell epitopes on both molecules. Cross-reactivity with two enolases from Cladosporium herbarum and Alternaria alternata was determined by inhibition of IgE-binding to these enolases by rHev b 9. Therefore, enolases may represent another class of highly conserved enzymes with allergenic potentials.  相似文献   

9.
10.
Plant enolase: gene structure, expression, and evolution.   总被引:19,自引:0,他引:19       下载免费PDF全文
Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle.  相似文献   

11.
We isolated and sequenced a clone for Candida albicans enolase from a C. albicans cDNA library by using molecular genetic techniques. The 1.4-kbp cDNA encoded one long open reading frame of 440 amino acids which was 87 and 75% similar to predicted enolases of Saccharomyces cerevisiae and enolases from other organisms, respectively. The cDNA included the entire coding region and predicted a protein of molecular weight 47,178. The codon usage was highly biased and similar to that found for the highly expressed EF-1 alpha proteins of C. albicans. Northern (RNA) blot analysis showed that the enolase cDNA hybridized to an abundant C. albicans mRNA of 1.5 kb present in both yeast and hyphal growth forms. The polypeptide product of the cloned cDNA, which was purified as a recombinant protein fused to glutathione S-transferase, had enolase enzymatic activity and inhibited radioimmunoprecipitation of a single C. albicans protein of molecular weight 47,000. Analysis of the predicted C. albicans enolase showed strong conservation in regions of alpha helices, beta sheets, and beta turns, as determined by comparison with the crystal structure of apo-enolase A of S. cerevisiae. The lack of cysteine residues and a two-amino-acid insertion in the main domain differentiated C. albicans enolase from S. cerevisiae enolase. Immunofluorescence of whole C. albicans cells by using a mouse antiserum generated against the purified fusion protein showed that enolase is not located on the surface of C. albicans. Recombinant C. albicans enolase will be useful in understanding the pathogenesis and host immune response in disseminated candidiasis, since enolase is an immunodominant antigen which circulates during disseminated infections.  相似文献   

12.
Aminoalcoholphosphotransferase is the enzyme that catalyzes the synthesis of phosphatidylcholine and phosphatidylethanolamine from diacylglycerol using CDP-aminoalcohol such as CDP-choline and CDP-ethanolamine. To determine its cDNA structure from roots of Chinese cabbage,Brassica campestris L. ssp.pekinensis, degenerate primers were designed from the regions showing high amino acid homology between yeastCPT1 and soybeanAAPT1 and used for PCR amplification of Chinese cabbage DNA. Chinese cabbage aminoalcoholphosphotransferase cDNA (AAPT) contains an open reading frame of 1,167 bp coding for a protein of 389 amino acids. It shared 81% identity and 94% similarity with soybeanAAPT1 at the predicted amino acid level. Hydropathy profile analysis suggested that the predicted protein structure of Chinese cabbage aminoalcoholphosphotransferase was very similar to the soybean enzyme, showing an overall hydrophobicity and having the same number of predicted transmembrane domains. Southern analysis indicated that there might be close isoforms of the enzyme.AAPT was expressed equally well in young shoots and roots.  相似文献   

13.
14.
不结球白菜PR4蛋白基因的克隆与诱导表达分析   总被引:1,自引:0,他引:1  
从不结球白菜抗病品种‘苏州青’中克隆到一个受SA和病原菌诱导的病程相关蛋白4(PR4)基因,命名为BcPR4(DDBJ登录号:AB325873),该基因核苷酸序列全长593 bp,编码140个氨基酸,与其它植物的PR4蛋白基因具有较高的相似性。系统进化树分析表明,该基因在不同物种之间具有保守性。基因组DNA杂交表明BcPR4属于多基因家族。实时定量PCR(qPCR)检测表明,SA和Peronospora parasitica均能诱导不结球白菜BcPR4转录表达,BcPR4在不结球白菜叶片中的表达特征说明它可能参与寄主对病原菌的抗性。  相似文献   

15.
大白菜雄性不育系RC7育性相关基因克隆与特性分析   总被引:1,自引:0,他引:1  
根据orf138的保守序列设计引物,以大白菜萝卜胞质雄性不育系RC7的mtDNA为模板进行PCR扩增,扩增出大小为588 bp的特异条带,该片段在叶片和花蕾中均有表达,没有转录后加工,可编码75个氨基酸,定名为orf75。同源性分析结果表明:orf75推导的氨基酸序列N末端与萝卜Ogu CMS所具有的ORF138一致性为100%,有28个氨基酸完全相同,C末端与钾依赖钠钙交换蛋白-1一致性为54%。初步认为,orf75可能是orf138与钾依赖钠钙交换蛋白-1的编码基因发生重排产生的新的开放阅读框。RC7的不育性与Ogu CMS具有相似性。该588 bp片段还可编码1个含有1个疏水基团和1个跨膜区的67aa的蛋白片段,定名为orf67,属可溶性蛋白。  相似文献   

16.
17.
In order to investigate molecules that could be involved in host-trematode relationships, we have analysed the excretory/secretory products (ESP) of Echinostoma caproni following a proteomic approach. Actin, Gluthathione S-transferase (GST) and enolase have been identified in the ESP. Enolase, observed to be one of the most abundant proteins, was further characterized. The molecular cloning and in vitro expression in Escherichia coli of E. caproni enolase allowed us to determine that the protein contains 431 amino acids and a theoretical MW of 46272 Da. E. caproni enolase shows high homology to other trematode enolases. The recombinant protein binds specifically to human plasminogen in vitro, as observed for the native protein, confirming its properties as a host-interacting molecule.  相似文献   

18.
从不结球白菜CMS新种质中分离得到的一个cDNA-AFLP差异片段,采用RT-PCR和RACE技术成功克隆了一个α-微管基因的cDNA全长序列,命名为TUBA2(DDBJ登录号为AB445012)。序列分析结果表明,该基因全长1 709 bp,最大开放阅读框为1 353 bp,编码450个氨基酸序列,与已公布的α-微管基因有较高的同源性。系统进化树分析发现,该基因在不同植物间具有高度保守性。Southern杂交表明TUBA2属于不结球白菜多基因家族的一个单一克隆基因。实时定量RT-PCR检测表明,该基因在不育系中的表达量显著低于保持系,同时在不同组织和细胞减数分裂不同时期该基因的表达量也存在明显差异。  相似文献   

19.
We observed that in vivo and in vitro a small fraction of the glycolytic enzyme enolase became covalently modified by its substrate 2-phosphoglycerate (2-PG). In modified Escherichia coli enolase, 2-PG was bound to Lys341, which is located in the active site. An identical reversible modification was observed with other bacterial enolases, but also with enolase from Saccharomyces cerevisiae and rabbit muscle. An equivalent of Lys341, which plays an important role in catalysis, is present in enolase of all organisms. Covalent binding of 2-PG to this amino acid rendered the enzyme inactive. Replacement of Lys341 of E.coli enolase with other amino acids prevented the automodification and in most cases strongly reduced the activity. As reported for other bacteria, a significant fraction of E.coli enolase was found to be exported into the medium. Interestingly, all Lys341 substitutions prevented not only the automodification, but also the export of enolase. The K341E mutant enolase was almost as active as the wild-type enzyme and therefore allowed us to establish that the loss of enolase export correlates with the loss of modification and not the loss of glycolytic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号