首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hedysarum laeve, a rhizomatous clonal half-shrub, commonly dominates in inland dunes in semiarid areas of northern China. This species propagates vegetatively by the extension of horizontal rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, 14C labeling and experimental defoliation were employed to test the photosynthate translocation within the interconnected parent–daughter ramet pairs. A proportion of 14C-photosynthates was transported from the parent ramet into the daughter ramet, the roots of the daughter ramet, and the rhizome; these three components showed more than 70% sink activity after 24-h translocation. On the other hand, the basipetal translocation (from daughter ramet into parent ramet) was relatively small with sink activity of less than 5%, but sink activity of the rhizome exceeded 10%. Defoliation had an influence on the photosynthate translocation between parent and daughter ramets. The intact parent ramets significantly increased their 14C-photosynthate translocation into defoliated daughter ramets when compared to intact daughter ramets. The daughter ramets transported significantly more 14C-photosynthates to the defoliated parent ramets than to the intact parent ramets. A portion of 14C-photosynthates was transported into the rhizome from both parent and daughter ramets, indicating that the rhizome is supported by both ramets for photosynthates. The clonal integration between ramets of the species through rhizome connection may confer benefit both to the ramets and the genet in adverse environments. Received: April 12, 2001 / Accepted: November 26, 2001  相似文献   

2.
A technique used for hydroponics was adapted to measure instantaneousroot water uptake from the soil for a leaf succulent CAM species,Agave deserti. Comparisons were made to previously modelledwater fluxes for A. deserti and to Encelia farinosa, a non-succulentC3species. Net CO2uptake and transpiration forA. deserti underwell-watered conditions occurred primarily at night whereasroot water uptake was relatively constant over 24 h. Leaf thicknessdecreased when transpiration commenced and then increased whenrecharge from the stem and soil occurred, consistent with previousmodels. A drought of 90 d eliminated net CO2uptake and transpirationand reduced the water content of leaves by 62%. Rewetting theentire root system for 7 d led to a full recovery of leaf waterstorage but only 56% of maximal net CO2uptake. Root water uptakewas maximal immediately after rewetting, which replenished rootwater content, and decreased to a steady rate by 14 d. Whenonly the distal 50% of the root system was rewetted, the timefor net CO2uptake and leaf water storage to recover increased,but by 30 d gas exchange and leaf water storage were similarto 100% rewetting. Rewetting 10 or 20% of the root system resultedin much less water uptake; these plants did not recover leafwater storage or gas exchange by 30 d after rewetting. A redundancyin the root system of A. deserti apparently exists for dailywater uptake requirements under wet conditions but the entireroot system is required for rapid recovery from drought.Copyright1999 Annals of Botany Company Agave deserti Engelm., desert, drought, gas exchange, rewetting, roots, succulent, water uptake.  相似文献   

3.
Autoradiography and liquid scintillation techniques were usedto trace the pattern of photoassimilate translocation in twoperennial forest herbs, Aster acuminatus Michx. and Clintoniaborealis (Ait.) Raf. Vegetative shoots of C. borealis emergeearly each spring from the growing apices of a long-lived rhizomesystem. Vegetative shoots of A. acuminatus emerge in late springfrom rhizomes that decay within 2 years. In both species rametssurvive for only one growing season. Any connected plants aresisters. Mature leaves of these two species were exposed for1 h periods to 14CO2 during spring and summer. Radioactivitycould subsequently be detected in exposed leaves (16–84per cent, depending on the season), adjacent above ground plantparts (0.7–23 per cent), roots and rhizomes (4.9–84per cent) and, when present, flowers (4–8.5 per cent).Old rhizomes of C. borealis are prominent storage sites forphotosynthate. In A. acuminatus, no significant translocationbetween sister ramets (i.e. above ground shoots connected bya common rhizome) was observed. In C. borealis, there was small,but consistent translocation between sister ramets (0.2–4per cent). Disturbance of unexposed sister ramets by defoliation,shading or herbivory increased the flow of photoassimilatesto disturbed parts in C. borealis, but not in A. acuminatus.Based on the absence of translocation flow, ramets of A. acuminatusmay be regarded as physiologically independent. Connected rametsof C. borealis show physiological integration. These resultsare correlated with ecological differences between the two species. Aster acuminatus, Clintonia borealis, translocation, ramet, vegetative reproduction, forest herb  相似文献   

4.
The floating, stoloniferous plant, Eichhornia crassipes, has high rates of productivity and rapidly invades new sites. Because the transport of carbon among connected ramets is known to increase the growth of clonal plants, we asked whether there is intraclonal carbon transport in E. crassipes. Because net photosynthesis of E. crassipes is significantly higher at high levels of atmospheric CO2, we also asked if high CO2 can change patterns of carbon transport in ways that might modify clonal growth. We exposed individual ramets within groups of connected ramets to 14CO2 for 15–45 min and measured the distribution of 14C in the group after 4 days of growth at 350, 700, 1,400, or 2,800 μ1 1−-1 CO2. At 350 μ1 1−-1 CO2, a parent ramet exported approximately 10% of the 14C that it assimilated to its first rooted offspring ramet. The offspring exported a similar percentage of the l4C it assimilated toward the parent; two-thirds of this 14C was retained by the parent, and one-third moved into new offspring of the parent. In all ramets, imported carbon moved into leaves as well as roots. At the higher levels of CO2, the percentage of assimilated carbon exported from a parent ramet to the leaf blades of its first offspring was lower by half. High CO2 had little other effect on carbon transport. E. crassipes maintains bidirectional transport of carbon between ramets even under uniform and favorable environmental conditions and when external CO2 levels are very high.  相似文献   

5.
To examine the effects of a doubled atmospheric CO2 concentrationand other aspects of global climate change on a common CAM speciesnative to the Sonoran Desert, Agave deserti was grown under370 and 750 µmol CO2 mol–1 air and gas exchangewas measured under various environmental conditions. Doublingthe CO2 concentration increased daily net CO2 uptake by 49%throughout the 17 months and decreased daily transpiration by24%, leading to a 110% increase in water-use efficiency. Underthe doubled CO2 concentration, the activity of ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) was 11% lower, phosphoenolpyruvatecarboxylase was 34% lower, and the activated:total ratio forRubisco was 25% greater than under the current CO2 concentration.Less leaf epicuticular wax occurred on plants under the doubledCO2 concentration, which decreased the reflectance of photosyntheticphoton flux (PPF); the chlorophyll content per unit leaf areawas also less. The enhancement of daily net CO2 uptake by doublingthe CO2 concentration increased when the PPF was decreased below25 mol m–2 d–1 when water was withheld, and whenday/night temperatures were below 17/12 C. More leaves, eachwith a greater surface area, were produced per plant under thedoubled CO2 concentration. The combination of increased totalleaf surface area and increased daily net CO2 uptake led toan 88% stimulation of dry mass accumulation under the doubledCO2 concentration. A rising atmospheric CO2 concentration, togetherwith accompanying changes in temperature, precipitation, andPPF, should increase growth and productivity of native populationsof A. deserti. Key words: Crassulacean acid metabolism, gas exchange, global climate change, Sonoran Desert  相似文献   

6.
Summary Agave deserti, a monocarpic perennial occurring in the northwestern Sonoran Desert, produces ramets on rhizomes that extend from the base of a parent plant. Shading ramtes to light compensation for two years did not decrease their relative growth rate (RGR) compared with unshaded ramets. However, the parents experienced a 30% decrease in total nonstructural carbohydrate (TNC) level, suggesting that carbohydrates were translocated from parents to ramets. Shaded parents had RGR's similar to unshaded parents, due in large part to consumption of 50% of the TNC reserves of shaded parents, but about 10% of the growth of the shaded parents was attributed to TNC received from their attached ramets. Estimates of parent and ramet growth separately, based on changes in TNC levels (converted to dry weight using a measured production value), net CO2 uptake of unfolded leaves, and respiration of roots, stems, and folded leaves, were similar to measured growth of parents and ramets combined, suggesting that parents and ramets are physiologically integrated and grow as a unit. Large TNC reserves, which were also shown to support growth during conditions of water limitation in the field, enhance the growth of ramets in an environment where seedling establishment is rare.Abbreviations DW dry weight - EPI environmental productivity index - PAR photosynthetically active radiation - RGR relative growth rate - TNC total nonstructural carbohydrate  相似文献   

7.
Summary Lathyrus sylvestris is a pioneer legume often found in disturbed habitats. Mainly reproduced through vegetative propagation, this clonal species presents a system of ramets that remain connected for several years. The existence of carbon transfer among ramets within a clone has been studied using 14C in situ. Assimilate translocation from primary to secondary ramets was observed in all clones when the primary ramet was exposed to 14CO2. The amount of transfer ranged from trace up to 90% of the total 14C incorporated. However, in only half of the clones there was consistent enrichment of the secondary ramet (5 to 89%) suggesting that interramets transfer of carbon may be facultative. Furthermore, when significant export occurred from the primary ramet, it was always principally towards only one ramet even when the clone included more than one. The transfer of 14C from secondary to primary ramets was shown to be significant only when photosynthesis of the latter was decreased by shading. In this case import of carbon was never more than 60% of the incorporated 14C.No correlation was found between age or size of the ramets and the intensity of transfer. The shading effect let suppose that transfers are mainly driven by carbon limitation due to changing environmental conditions and not to the state of ramet maturity. The adaptative advantage of such facultative physiological integration between ramets of a clone is discussed.  相似文献   

8.
《Acta Oecologica》2002,23(2):109-114
Hedysarum laeve, a rhizomatous clonal semi-shrub, commonly dominates the inland dunes in semiarid areas of northern China. This species propagates vegetatively by extension of horizontal woody rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, the plants were experimentally manipulated by cutting rhizome connections and 14C-labelling techniques were employed to investigate the ecological significance of rhizome connections within the H. laeve clone. Severance of rhizome connections had a great effect on the performance of young ramets within a clone. Young ramets severed from their parent ramets experienced a significant reduction both in ramet growth and vegetative propagation, as compared with the intact young ramets. Within clonal fragments, consisting of three interconnected ramets including a mother ramet, a daughter ramet and a granddaughter ramet, 14C-photosynthates from the fed leaves of mother ramets were acropetally transported to all clonal component parts. The 14C-photosynthate translocation within the clonal fragment provides evidence that the young ramets were supported by their parent ramets. Our results suggest that the woody rhizome connections among the interconnected ramets are ecologically and strategically important for the species to grow in the sand dune habitat.  相似文献   

9.
Hydraulic conductivity (Lp), radial conductivity (LR), axialconductance (Kh), and related anatomical characteristics forlateral roots of Agave deserti were investigated during rootgrowth and drought-induced abscission. The elongation rate oflateral roots averaged 5 mm d–1 under wet conditions andwas reduced 95% by 17 d of drought (  相似文献   

10.
Hedysarum laeve, a rhizomatous clonal half-shrub, commonly dominates in inland dunes in semiarid areas of northern China. This species propagates vegetatively by the extension of horizontal rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, (14)C labeling and experimental defoliation were employed to test the photosynthate translocation within the interconnected parent-daughter ramet pairs. A proportion of (14)C-photosynthates was transported from the parent ramet into the daughter ramet, the roots of the daughter ramet, and the rhizome; these three components showed more than 70% sink activity after 24-h translocation. On the other hand, the basipetal translocation (from daughter ramet into parent ramet) was relatively small with sink activity of less than 5%, but sink activity of the rhizome exceeded 10%. Defoliation had an influence on the photosynthate translocation between parent and daughter ramets. The intact parent ramets significantly increased their (14)C-photosynthate translocation into defoliated daughter ramets when compared to intact daughter ramets. The daughter ramets transported significantly more (14)C-photosynthates to the defoliated parent ramets than to the intact parent ramets. A portion of (14)C-photosynthates was transported into the rhizome from both parent and daughter ramets, indicating that the rhizome is supported by both ramets for photosynthates. The clonal integration between ramets of the species through rhizome connection may confer benefit both to the ramets and the genet in adverse environments.  相似文献   

11.
Roots of desert succulents occupy the upper layers of porous,well-aerated soils. However, roots of Agave deserti, Ferocactusacanthodes, and Opuntia ficus-indica all tolerated many daysof soil anoxia; 0% O2 in the soil gas phase for 30 d reducedthe fraction of cells taking up the vital stain neutral red,an average of only 18% for the cortex and 6% for parenchymacells within the stele of perennial established roots. Ephemeralrain roots, induced by watering as branches on the establishedroots, were more susceptible to 0% O2 in the soil gas phase;19 d abolished stain uptake for cortical cells and 32 d forstelar parenchyma cells. Soil CO2 levels above the 0.1% observedin the root zone in the field rapidly reduced uptake of neutralred; the fraction of cortical cells taking up the stain decreased30% in 10 h at 0.5% CO2 and was abolished in 9 h at 2% and 7h at 10% CO2 averaged for the three species. Rain roots weresomewhat more susceptible than established roots to elevatedsoil CO2 levels, and stelar parenchyma cells were much lesssusceptible than were cortical cells. When uptake of the vitalstain was abolished by elevated soil CO2, no anatomical evidenceof cellular damage was observed. For A. deserti exposed to 2%CO2, the pH of macerated root tissue decreased about 0.35 pHunit over 10 h; CO2 apparently entered the cells, lowered theintracellular and/or cell wall pH, and prevented the accumulationof neutral red. Elevated soil CO2 also inhibits root respirationfor the three desert succulents considered. Hence, the restrictionof such species to porous soils may reflect the relatively rapidinhibiting effects of elevated soil CO2 levels rather than arequirement for high soil O2 levels, consistent with the observationthat desert soils tend to have low gas-phase CO2 levels near0.1% compared with 1% or more in the root zone of non-desertspecies. Key words: Agave deserti, Ferocactus acanthodes, neutral red, Opuntia ficus-indica, pH  相似文献   

12.
HARVEY  D. M. 《Annals of botany》1974,38(2):327-335
In experiments using radioactive carbon dioxide (14CO2) a comparisonwas made of the 14C-photoassimilate translocation potentialsof two normal leaved (genotype AfAfTlTl) and two mutant formsof Pisum sativum (pea). A 14CO2 administration method is describedthat permitted 14C-translocation studies to be conducted underfield conditions. One of the mutants available produced tendrils in place of leaves(afafTlTl). The other mutant studied was without tendrils buthad a much branched petiole with numerous relatively minuteleaflets (afaftltl). These mutants and the normal-leaved cultivarswith which they were compared were not isogenic lines. Lengthybackcrossing would be required before full assessment couldbe made of the possible agronomic value of such mutations. An interim evaluation of these mutants was based on 14C-distributionassays that were conducted 48 h after feeding 14CO2, to specifiedleaves. The indication was that in translocation terms the leafand pod had a well defined respective source and sink relationshipthat was independent of leaf morphology. In each case the podswhich constituted the major 14C sinks depended on which leafhad been fed 14CO2. With regard to sink specific activity asdefined by the quantity of 14C incorporated per unit dry weightof pod, the mutants were not significantly different from normal. The implication of these findings was that fundamental changesin pea leaf morphology could be made genetically without a markedeffect on the photoassimilate export potential of the leaf.  相似文献   

13.
Detailed analysis of the interrelationships between sourcesof photosynthate production and sites of utilization in thetaxonomically closely related species Ranunculus bulbosus L.and R. repens L. showed that leaves whether present on rosette,stem, or stolon had similar levels of 14CO2-fixation but thepattern of distribution of radiocarbon to the rest of the plantdiffered. Fruits of R. bulbosus had a lower fixation rate thanleaves but were characterized by total retention of the fixedradiocarbon. Rosette leaves of R. bulbosus supplied the youngleaves, developing apices in the rosette, roots, and corms,whereas the labelled assimilates from cauline leaves were evenlydistributed between reproductive and vegetative parts. The cormwas the major sink both at the flowering and fruiting stages.When plants were treated with 14CO2 in the field even higherlevels of radiocarbon moved into the corm than in comparableexperiments under greenhouse conditions. The rosette leaf ofR. repens exported mainly to actively growing stolons in plantswith many stolons bearing rooted ramets although growth of astolon was also substantially supported by photosynthates producedby its own ramets. A proportion of the radiocarbon fixed byleaves of mature ramets was exported and moved in a predominantlyacropetal direction into the stolon apex, stolon axis, and youngramets of the same stolon. The stock in R. repens had a muchlower demand for assimilates than the corm in R. bulbosus. The results are consistent with the concept that R. bulbosusoperates a conservative policy involving the replacement ofthe parent in situ by a daughter from the corm, coupled withextensive fruit production. In R. repens the emphasis is onlateral spread and exploitation of substantial areas of groundby vegetative spread and replacement of the parent by daughtersmany of which may occupy sites some distance from the parent.  相似文献   

14.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

15.
Various plant and environmental factors influence the hydraulicproperties for roots, which were examined using negative hydrostaticpressures applied to the proximal ends of individual excisedroots of a common succulent perennial from the Sonoran Desert,Agave deserti Engelm. The root hydraulic conductivity, Lp, increasedsubstantially with temperature, the approximately 4-fold increasefrom 0.5°C to 40°C representing a Q10 of 1.45. Suchvariations in Lp with temperature must be taken into accountwhen modelling water uptake, as soil temperatures in the rootzone of such a shallow-rooted species vary substantially bothdaily and seasonally. At 20°C, Lp was 2.3 x 10–7 ms{macron}1MPa{macron}1for 3-week-old roots, decreasing to abouthalf this value at 10 weeks and then becoming approximatelyhalved again at 6 months. For a given root age, Lp for rainroots that are induced by watering as lateral branches on theestablished roots (which arise from the stem base) was aboutthe same as Lp for established roots. Hence, the conventionalbelief that rain roots have a higher Lp than do establishedroots is more a reflection of root age, as the rain roots tendto be shed following drought and thus on average are much youngerthan are established roots. Unlike previous measurements onroot respiration, lowering the gas-phase oxygen concentrationfrom 21% to 0% or raising the carbon dioxide concentration from0.1% to 2% had no detectable effect on Lp for rain roots andestablished roots. Lp for rain roots and established roots wasdecreased by an average of 11% and 35% by lowering the soilwater potential from wet conditions (soil=0 kPa) to {macron}40kPa and {macron}80 kPa, respectively. Such decreases in Lp mayreflect reduced water contact between soil particles and theroot surface and should be taken into account when predictingwater uptake by A. deserti. Key words: Gas phase, rain roots, root age, soil, temperature, water potential  相似文献   

16.
Shumway  Scott W. 《Annals of botany》1995,76(3):225-233
Resource sharing between ramets growing across environmentalresource gradients may have important consequences for clonalplant populations and community dynamics. As the clonal saltmarsh grasses, Spartina patens and Distichlis spicata, vegetativelycolonize disturbance-generated bare patches, they span steepgradients in soil salinity and available sunlight. Examinationof water relations and carbon translocation in the field andgreenhouse revealed that connected ramets of these marsh grassesshare water and carbon in response to gradients in resourceavailability. Ramets colonizing disturbance patches rely uponphysiological integration with connected parent ramets to overcomewater stress associated with hypersaline patch environments.In addition, upon establishment inside a bare patch, daughterramets may translocate carbon back to shaded parent ramets inthe surrounding vegetation outside of patches. Physiological integration of ramets colonizing disturbance-generatedbare patches and parent ramets outside of patches may explainthe predominance of vegetative invasion over sexual recruitmentin marsh succession. Hypersaline soil conditions, which inhibitseedling recruitment into patches, have little effect on thesuccess of clonal colonizers that can import water from parentramets. This success appears to be due to the ability of clonalmarsh grasses to translocate water and carbon products betweenramets growing across opposing gradients in resource availability.Copyright1995, 1999 Academic Press Clonal integration, Distichlis spicata, halophytes, salt marsh ecology, secondary succession, Spartina patens  相似文献   

17.
A morphologically explicit numerical model for analysing wateruptake by individual roots was developed based on a conductornetwork, with specific conductors representing axial or radialconductivities for discrete root segments. Hydraulic conductivity(Lp; m s–1 MPa–1) was measured for roots of Agavedeserti Engelm. and Opuntia ficus-indica (L.) Miller by applyinga partial vacuum to the proximal ends of excised roots in solution.Lp was also measured for 40- to 80-mm segments along a root,followed by measurements of axial conductivity and calculationof radial conductivity. Predicted values of Lp for entire rootsbased on two to ten segments per root averaged 1.04±0.07(mean±s.e. mean for n = 3) of the measured Lp for A.deserti and 1.06±0.10 for O. ficus-indica. The modelalso closely predicted the drop in water potential along theroot xylem (xylem); when a tension of 50 kPa was applied tothe proximal ends of 0.2 m-long roots of A. deserti and O. ficus-indica,the measured xylem to midroot averaged 30 kPa compared witha predicted decrease of 36 kPa. Such steep gradients in xylemsuggest that the driving force for water movement from the soilto young distal roots may be relatively small. The model, whichagreed with an analytical solution for a simple hypotheticalsituation, can quantify situations without analytical solutions,such as when root and soil properties vary arbitrarily alonga root. Agave deserti, electrical circuit analog, hydraulic conductivity, Opuntia ficus-indica, water potential  相似文献   

18.
The effects of three ranges of CO2 concentration on growth,carbon distribution and loss of carbon from the roots of maizegrown for 14 d and 28 d with shoots in constant specific activity14CO2 are described. Increasing concentrations of CO2 led toenhancement of plant growth with the relative growth rate (RGR)of the roots affected more than the RGR of the shoots. Between16% and 21% of total net fixed carbon (defined as 14C retainedin the plant plus 14C lost from the root) was lost from theroots at all CO2 concentrations at all times but the amountsof carbon lost per unit weight of plant decreased with time.Possible mechanisms to account for these observations are discussed. Key words: Growth, Roots, Carbon loss, [CO2]  相似文献   

19.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

20.
In spite of the importance of respiration in forest carbon budgets,the mechanisms by which physiological factors control stem respirationare unclear. An experiment was set up in a Eucalyptus globulusplantation in central Portugal with monoculture stands of 5-year-oldand 10-year-old trees. CO2 efflux from stems under shaded andunshaded conditions, as well as the concentration of CO2 dissolvedin sap [CO2*], stem temperature, and sap flow were measuredwith the objective of improving our understanding of the factorscontrolling CO2 release from stems of E. globulus. CO2 effluxwas consistently higher in 5-year-old, compared with 10-year-old,stems, averaging 3.4 versus 1.3 µmol m–2 s–1,respectively. Temperature and [CO2*] both had important, andsimilar, influences on the rate of CO2 efflux from the stems,but neither explained the difference in the magnitude of CO2efflux between trees of different age and size. No relationshipwas found between efflux and sap flow, and efflux was independentof tree volume, suggesting the presence of substantial barriersto the diffusion of CO2 from the xylem to the atmosphere inthis species. The rate of corticular photosynthesis was thesame in trees of both ages and only reduced CO2 efflux by 7%,probably due to the low irradiance at the stem surface belowthe canopy. The younger trees were growing at a much fasterrate than the older trees. The difference between CO2 effluxfrom the younger and older stems appears to have resulted froma difference in growth respiration rather than a differencein the rate of diffusion of xylem-transported CO2. Key words: Eucalyptus globulus, refixation, stem respiration Received 19 May 2008; Revised 14 September 2008 Accepted 8 October 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号