首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
R-藻红蛋白的结构、功能及其应用   总被引:4,自引:0,他引:4  
R-藻红蛋白是最重要类型的藻红蛋白,为许多藻类的前级捕光色素蛋白,在光的激发下,能发出桔红色荧光。现对R-藻红蛋白的三维结构与功能的关系、R-藻红蛋白离体的光学活性在肿瘤光动力学治疗(PDT)中作为光敏剂和荧光免疫检测等领域作为荧光探针分子的应用进行综述。  相似文献   

2.
螺旋藻藻蓝蛋白光敏作用的研究进展   总被引:1,自引:0,他引:1  
螺旋藻是一种广泛养殖的丝状体蓝藻。从螺旋藻中提取的藻蓝蛋白具有抗肿瘤和增强免疫等多种生物学功能,作为光敏剂,藻蓝蛋白可应用于肿瘤治疗。本文阐述了藻蓝蛋白的结构、光动力疗法的原理和藻蓝蛋白光敏作用的研究进展,并介绍了藻蓝蛋白在光动力疗法中的应用现状与前景。  相似文献   

3.
R-藻红蛋白介导的光敏反应对DNA分子的生物学效应   总被引:6,自引:0,他引:6  
藻红蛋白(phycoerythrin, PE)是海藻中的重要捕光色素蛋白,具有强荧光性,易溶于水.在藻体内能将捕获的光能传递给光合反应中心; 在体外则能将光能传递给周围环境中的氧分子,产生如单线态氧等活性氧组分,可用来介导光动力效应治疗癌症.将纯化的藻红蛋白加入到瘤细胞培养基中,数小时后,采用488 nm波长的氩离子激光辐照,MTT法检测细胞存活数,计算细胞存活率. 3H-TdR掺入实验观察细胞DNA的合成.结果表明,藻红蛋白介导的光动力反应能够有效地抑制肿瘤细胞DNA合成并杀伤癌细胞.随着藻红蛋白浓度增加,DNA合成下降,瘤细胞存活率降低.将藻红蛋白加入到pUC18质粒溶液中,随之进行激光辐照,琼脂糖电泳结果可见pUC18构象由超螺旋(supercoiled)向带切口的环形构象(relax)转换.结果提示:通过改变或影响DNA构象,抑制细胞DNA合成可能是藻红蛋白介导肿瘤光动力治疗的途径之一.  相似文献   

4.
光动力治疗( photodynamic therapy,PDT )是光敏剂在特定波长光源的激发下、在氧分子存在下产生细胞毒性物质的一种治疗方法,主要用于抗肿瘤治疗.目前临床应用的光敏剂对肿瘤细胞的靶向性比较有限,近来的一个热门研究方向是靶向性光敏剂.结合作者多年来在该方向的工作,综合近年来光敏剂研究的发展,比较全面地阐述了带有功能性多肽的靶向性光敏剂及其在光动力治疗中的应用.阐述多肽作为靶向基团的优势,总结了包括透膜多肽、血管靶向多肽、细胞受体靶向多肽等功能多肽与光敏剂偶合物的生物效应,说明了多肽能够实现光敏剂的靶向作用.  相似文献   

5.
藻胆蛋白研究   总被引:18,自引:0,他引:18  
藻胆蛋白是大量出现于红藻 (Rhodophy ta)、蓝绿藻 (Cyanophyta)和隐藻 (Cryptophyta)中的捕光色素蛋白 ,主要包括藻红蛋白、藻蓝蛋白和别藻蓝蛋白三种。藻胆蛋白把捕获的光能高效地传递给叶绿素 ,从而使海藻的光合作用得以发生[1] 。细菌、藻类和高等植物的光合作用的共同特征是具有很多“天线分子” ,这些“天线分子”吸收光能并通过非放射性过程将激发能传递到含有叶绿素的“反应中心” ,在红藻、蓝绿藻和隐藻中 ,藻胆蛋白就充当这种“天线分子”的角色。因此 ,最初的藻胆蛋白研究主要集中在探讨其光合作…  相似文献   

6.
从条斑紫菜中提取高纯度R-藻红蛋白(R-PE)和R-藻蓝蛋白(c-pc),采用MTT法测定主要研究了不同浓度(10、25、50和100μg/ml)R-PE和C-PC分别介导的光动力效应对人喉癌Hep-2细胞的生存率的影响.实验结果显示,两种藻胆蛋白的光动力作用对Hep-2细胞具有杀伤作用.在浓度为100μg/ml,照射剂量为5OJ/cm2的条件下,藻蓝蛋白对应的细胞存活率为64%.藻红蛋白对应的仅为57%;单用碘钨灯处理,Hep-2细胞的存活率达到86.9%;而单独使用这两种藻胆蛋白处理Hep-2细胞,培养24h后,低浓度藻胆蛋白(10、25μg/ml)对细胞的抑制效果不明显,高浓度对细胞生长具有一定的抑制效果,抑制率为68%.实验证明条斑紫菜R-藻红蛋白和C-藻蓝蛋白具有可开发人喉癌治疗光敏剂应用前景.  相似文献   

7.
从单细胞蓝藻钝顶螺旋藻中纯化C-藻蓝蛋白,从海洋红藻多管藻纯化R-藻红蛋白.分别用高碘酸钠氧化法和戊二醛法将二者共价连接为R-藻红蛋白-C-藻蓝蛋白交联物,再用Sephadex G-200柱层析纯化.光谱分析表明,用两种方法构建的共价交联物都可以将激发能从R-藻红蛋白传递到C-藻蓝蛋白.二者相比,高碘酸钠氧化法构建的共价交联物的能量传递效率更高.  相似文献   

8.
藻蓝蛋白亚基细胞渗透性及对肿瘤细胞光敏作用的研究   总被引:3,自引:0,他引:3  
目的:研究藻蓝蛋白亚基对SP2/0、S180、COS7、C6的最佳渗透条件及由其介导的PDT对肿瘤细胞的抑制作用。方法:采用柱层析方法从藻蓝蛋白样品中分离得到藻蓝蛋白亚基,通过荧光显微镜观察其在细胞内的渗透特性,并以He-Ne激光器为激发光源,MTT法检测藻蓝蛋白亚基光敏作用对肿瘤细胞生长的抑制作用。结果:藻蓝蛋白α、α/β亚基在75μg/mL浓度下可以在4 h时充分地进入细胞,并可以在细胞内稳定2 h以上;藻蓝蛋白中的α,β亚基稳定性和作用不相同,β亚基荧光性强但易于降解,由α亚基介导的PDT作用比α/βPDT作用强;100μg/mLα亚基介导的PDT对SP2/0和S180两种悬浮细胞的抑制率可分别达到78.6%和39.8%,强于贴壁细胞C6和COS7的29.2%和17.8%。结论:藻蓝蛋白α亚基在合适的渗透条件下表现出较强的光动力学抗肿瘤效果,且PDT效果与光敏剂浓度、照射剂量及细胞类型相关。  相似文献   

9.
组织氧合作用和光敏剂应用在疾病诊治中都有着重要的作用,因此其实时在体无损检测很有意义。光动力疗法涉及光敏剂、光和氧分子三大要素,其疗效受组织氧合作用影响。本文对光声成像(PAI)、光声寿命成像(PALI)和多光谱光声层析成像(MSOT)等光声成像技术在光动力疗法的研究和应用中的使用现状进行了综述。对相关设备系统在检测光敏剂、组织氧分压和微血管损伤等方面的应用原理和技术分别进行了介绍,并总结了这些技术的应用前景。  相似文献   

10.
光动力疗法已被用于临床治疗除实体肿瘤以外的一些微血管类疾病,包括鲜红斑痣(portwine stains,PWS)和老年视网膜黄斑变性(age-related macular degeneration,AMD)等。竹红菌素是一种苝醌类光敏剂,因为在光疗窗口(600~900 nm)的吸收较少,它不适用于实体肿瘤的光动力治疗,但对于治疗微血管类疾病却有其独特的优势。本文根据竹红菌素光物理特性提出其主要适应症范围,并根据其临床实用化问题提出应对策略。通过构造竹红菌素水溶性纳米制剂或具有优化脂水双亲性的衍生物,实现脂溶性光敏剂既可以安全给药又最大程度保持生物利用度和光动力活性。生物学实验证明竹红菌素类光敏剂对生物靶体具有超强的光动力活性。由此推测:竹红菌素类光敏剂在光动力治疗微血管疾病(如鲜红斑痣和老年黄斑变性)及其它浅表型疾病方面具有广阔的应用前景。  相似文献   

11.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

12.
The presence of light, oxygen and photosensitizer (organic dye) is required for the photodynamic effect. Light and photosensitizer are harmless by themselves, but when combined with oxygen, reactive oxygen species (ROS) can be produced. This photodynamic effect is used in photodynamic therapy (PDT); the production of ROS as lethal cytotoxic agents can inactivate tumor cells. However, during PDT, there are many difficulties, so it is not possible to excite the photosensitizer using a laser, a source of light at the wavelengths specific to the photosensitizer (in visible region of the spectrum). Chemiluminescence is the light emission as a result of a chemical reaction. It is possible to use a chemiluminescent mixture to excite the photosensitizer even if the light emission does not conform to the absorption maximum of the photosensitizer. Luciferin and luminol have been used as chemiluminescent compounds (energizers) for the excitation of the photosensitizers. The aim of this work was to compare the chemiexcitation of some selected photosensitizers (e.g. fluorescein, eosin, methylene blue, hypericin and phthalocyanines) by chemiluminescent mixtures containing luminol (high chemiluminescent quantum yield) or phthalhydrazide (low chemiluminescent quantum yield) on some Gram‐positive (Enterococcus faecalis, Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa, E. coli) bacteria and some cell lines (NIH3T3 and MCF7). The efficiency of the chemiexcitation was dependent on the kind of the photosensitizer and on the type of the bacterial strain or cell line and was independent of the energizers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT) of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm) and pulsed laser (584 nm, 10 Hz, 18 ns) modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.  相似文献   

14.
Curcumin, a natural compound has several antineoplastic activities and is a promising natural photosensitizer used in photodynamic therapy. However, its low solubility in physiological medium limit the clinical use of curcumin. This study aimed to analyze the action of curcumin-nanoemulsion, a new and well-designed Drug Delivery System (DDS+) molecule, used as a photosensitizing agent in photodynamic therapy in an in vitro breast cancer model, MCF-7 cells. The empty nanoemulsion fulfils all necessary requirements to be an excellent DDS. Furthermore, the use of curcumin-nanoemulsion in photodynamic therapy resulted in a high phototoxic effect after activation at 440?nm, decreasing to <10% viable tumor cells after two irradiations and increasing the reactive oxygen species (ROS) production. The use of curcumin-nanoemulsion associated with photodynamic therapy resulted in an increase in the levels of caspase 3/7 activity for the studied MCF-7 cell model, indicating that this therapy triggers a cascade of events that lead to cell death, such as cellular apoptosis. In conclusion, curcumin-nanoemulsion proved to be efficient as a photosensitizing agent, had phototoxic effects, significantly decreased the proliferation of MCF-7 cells and stimulating the ROS production in combination with photodynamic therapy, so, this formulation has a great potential for use in treatment of breast cancer.  相似文献   

15.
In recent years, choloroaluminum phthalocyanine tetrasulfonate (A1PCTS) has been shown to be a promising photosensitizer for the photodynamic therapy (PDT) of cancer. Although its mechanism of photodynamic action is not well defined, A1PCTS is going to be under clinical trials of PDT. In this study, in vitro addition of A1PCTS to a suspension of rat epidermal microsomes followed by irradiation with red light (approximately 675 nm) resulted in significant destruction of cytochrome P-450 and associated monooxygenase activities. The photodestructive effect was dependent on both the dose of A1PCTS and the duration of light exposure. Studies using various quenchers of reactive oxygen species showed that only scavengers of singlet oxygen such as histidine, 2,5-dimethylfuran, beta-carotene and sodium azide afforded substantial protection against photodestruction. Our data indicate the direct involvement of singlet oxygen in the A1PCTS-mediated photodestructive process.  相似文献   

16.
光动力治疗创伤小,在恶性肿瘤治疗方面的应用已经得到了临床认可。治疗过程中需要给予光敏剂,在光照下产生分子氧对肿瘤细胞产生杀伤作用。但是,大多数光敏剂缺乏对肿瘤细胞的特异性,其在肿瘤中的富集主要与细胞高代谢有关,并且在水相媒介中溶解度比较差。纳米技术应用于光动力治疗提供了一种有效地体内运输光敏剂的方式。目前,聚合物纳米粒与光动力药物传递的研究越来越多,光敏剂通过纳米粒的运输为弥补光动力治疗的不足提供了可能,这是因为纳米载体可以将治疗浓度的光敏剂运送到肿瘤细胞而不造成非靶向组织的副损伤。本文将介绍对肿瘤光动力治疗中具有特异性的聚合物纳米粒的种类及在临床中的应用情况,为肿瘤靶向治疗提供新思路。  相似文献   

17.
The aim of this study was to shown that the photosensitizer in photodynamic therapy (PDT) can contribute to the dark toxicity and phototoxicity of the tumor by binding with copper. This binding process can remove the copper from the body, stopping angiogenesis as well as activating the mechanisms of cell death, such as apoptosis and necrosis. In PDT, this coupling may be considered a new route for fighting cancer in addition to those already known which involve reactive oxygen species.  相似文献   

18.
Photodynamic therapy is selective destruction of cells stained with a photosensitizer upon irradiation with light at a specific wavelength in the presence of oxygen. Cell death upon photodynamic treatment is known to occur mainly due to free radical production and subsequent development of oxidative stress. During photodynamic therapy of brain tumors, healthy cells are also damaged; considering this, it is important to investigate the effect of the treatment on normal neurons and glia. We employed live-cell imaging technique to investigate the cellular mechanism of photodynamic action of radachlorin (200 nM) on neurons and astrocytes in primary rat cell culture. We found that the photodynamic effect of radachlorin increases production of reactive oxygen species measured by dihydroethidium and significantly decrease mitochondrial membrane potential. Mitochondrial depolarization was independent of opening of mitochondrial permeability transition pore and was insensitive to blocker of this pore cyclosporine A. However, irradiation of cells with radachlorin dramatically decreased NADH autofluorescence and also reduced mitochondrial NADH pool suggesting inhibition of mitochondrial respiration by limitation of substrate. This effect could be prevented by inhibition of poly (ADP-ribose) polymerase (PARP) with DPQ. Thus, irradiation of neurons and astrocytes in the presence of radachlorin leads to activation of PARP and decrease in NADH that leads to mitochondrial dysfunction.  相似文献   

19.
A porphyrin with amino acid moieties was synthesized in this work, which may be a latent photosensitizer for photodynamic therapy (PDT). Adler's strategy was used to synthesize meso-tetra (4-nitrophenyl) porphyrin (TNPP) through cyclolization of 4-nitrobenzaldhyde and pyrrole in refluxed nitrobenzene. Reduction of TNPP yielded meso-tetra(4-aminophenyl) porphyrin (TAPP). The synthesis was improved by employing lactic acid as a catalyst. Based on TAPP, porphyrin with valine (TAPP-4Val) was obtained. The application of the resultant TAPP-4Val as tumor photosensitizer on human breast tumor cells for photodynamic therapy (PDT) was preliminarily explored. Dark-toxicity evaluations showed that, under a concentration at up to 6 x 10(-6) M, the survival of MCF-7 cells was larger than 90%, which means TAPP-4Val is almost of non-cytotoxicity. However, TAPP-4Val showed remarkable phototoxicity after visible light irradiation. Effects of irradiation time on the survival of cells under typical concentrations of TAPP-4Val were also studied. The new porphyrin with amino acid moieties, TAPP-4Val, is of high phototoxicity but minimal or no dark-toxicity, which can be used as an effective photosensitizer for PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号