首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new bacterial gene (groPC) which affects lambda DNA replication.   总被引:33,自引:0,他引:33  
Summary A bacterial mutation affecting DNA replication, called groPC756, has been mapped between the thr and leu bacterial loci. Most of the parental DNA does not undergo even one round of replication in this host. Lambda mutants, called , which map in the P gene are able to overcome the inhibitory effect of the groPC756 mutation. It is shown that the mutation at the groPC locus also interferes with bacterial growth at 42°C. A -transducing phage, carrying the groPC+ allele, was isolated as a plaqueformer on groPC756 bacteria. Upon lysogenization, it restores both the gro + and temperature resistant phenotypes.  相似文献   

2.
Summary We have previously shown that a mutation (groPC259) in the E. coli dnaJ gene renders the cell inviable at high temperatures and arrests bacteriophage DNA replication at all temperatures (Sunshine et al., 1977). We have isolated dnaJ ++ transducing phages both by in vitro cloning and by abnormal excision of a dnaK transducing phage integrated near the dnaJ locus. The dnaJ gene product has been identified on SDS polacrylamide gels after infection of UV-irradiated E. coli cells by dnaJ ++ derivative phages. It is a polypeptide chain with an apparent molecular weight of 37,000-daltons. This has been verified by the fact that a transducing phage carrying an amber mutation in the dnaJ gene fails to induce the synthesis of the 37,000-dalton polypeptide chain upon infection of sup ++ bacteria, but does so upon infection of supF or supD bacteria.  相似文献   

3.
Summary The E. coli dnaK (groPC756) gene product is essential for bacteriophage DNA replication. Bacterial DNA segments carrying this gene have been cloned onto a bacteriophage vector. The product of the dnaK gene has been identified on SDS polyacrylamide gels after infection of UV-irradiated E. coli cells. The dnaK gene codes for a polypeptide with an apparent molecular weight of 93,000-Mr. Transducing phages carrying amber mutations in the dnaK gene fail to induce the synthesis of the 93,000-Mr polypeptide chain upon infection of sup + bacteria, but do so upon infection of supF bacteria. E. coli carrying the dnaK756 mutation are, in addition, temperature sensitive for growth at 43° C. It is shown that the dnaK756 mutation results in an overproduction of the dnaK gene product at that temperature.  相似文献   

4.
Attempts to characterize thegrpD55 mutation ofEscherichia coli have led us to conclude that the gene had been assigned an incorrect map position. The mutation was found to cotransduce withmalF3089:: Tn10 (at 91.5 min) and adnaB-expressing plasmid was able to complement fully thegrpD55 defect in replication. These studies strongly suggest thatgrpD55 is an allele ofdnaB and is localized near 92 min on theE. coli linkage map.  相似文献   

5.
Summary Temperature sensitive dnaAts46 mutants, in which initiation of chromosome replication is blocked at 42° C, are unable to maintain a dv plasmid at the permissive temperature unless the plasmid carries a mutation in gene P of the type permitting phage to grow in groP (dnaB) bacteria. The growth rate of dnaAts46 mutants seems to be impaired by the presence of the dvP mutant plasmid.Cold sensitive dnaAcos mutants which overinitiate replication at low temperature and grow normally only at 40° and above, can maintain efficiently dvP + plasmids as well as dvP mutants. Cold sensitivity of dnaAcos mutants is suppressed by the presence of the plasmid dvP + and by certain dvP mutants, but not by others.The gene P product seems to act by reducing the initiation potential of both types of dnaA mutants, aggravating the initiation defect in dnaAts46 and correcting the overinitiation of dnaAcos.  相似文献   

6.
Summary Escherichia coli was infected with precA +to determine the genetic and physiological factors controlling recA +gene expression. When precA +replication was prevented by superinfection immunity, recA +protein synthesis was induced by UV radiation. The recA +gene is negatively controlled by the lexA +gene product because i) a dominant lexA mutation, lexA3, prevented induction of recA +protein synthesis ii) a recessive lexA mutation, tsl-1, caused induction of recA +protein synthesis. Conversely positive control of recA +gene expression requires recA +protein because i) a co-dominant tif-1 mutation (a recA mutation) caused induction of recA +protein synthesis ii) a recessive mutation, recA1, prevented cis-induction of recA protein synthesis. recA +protein and Protein X of UV irradiated bacteria co-migrated and were subject to the same physiological and genetic controls. It is concluded that Protein X is recA +protein. lysogenic induction was prevented by TPCK, a protease inhibitor. However TPCK did not prevent induction of recA +protein synthesis, indicating that induction of the two processes occurs in different ways. It is suggested that the lexA +and recA +proteins normally combine to repress the recA +gene. Derepression might occur after DNA damaging treatments because the amount of this complex would be reduced by recA +protein i) binding to single-stranded DNA and/or ii) being activated to function proteolytically towards regulatory molecules such as repressor.  相似文献   

7.
Summary An Escherichia coli mutant defective in replication of the chromosome has been isolated from temperature-sensitive mutants that cannot support colicin E1 plasmid DNA synthesis in the presence of chloramphenicol. Cellular DNA synthesis of the mutant ceases almost immediately after transfer to the nonpermissive temperature. The defect is due to a single mutation, dna-59, which is located close to the sites of dnaA mutations and a cou R mutation conferring DNA gyrase with resistance to coumermycin. The dna-59 mutant is not able to support DNA synthesis of phage at the high temperature. The mutant also restricts growth of X174 phage at the high temperature, but permits formation of supercoiled closedcircular duplex replicative intermediates. T7 phage can grow on the mutant even at the high temperature.A specialized transducing phage imm 21[tna dnaA]#2 (Miki et al., 1978) supports growth of dna-59, dnaA46 and dna-167 cells at the high temperature. Some of the EDTA-resistant derivatives of the phage have lost part or all of the dnaA gene, but carry gene function complementing the defect of dna-59 cells, as judged by conversion of the above dna strains to wild type cells by phage infection, and by suppression of the loss of viability of dna-59 cells at the high temperature by phage infection. The gene containing the dna-59 mutation site is thus distinct from the dnaA gene. Since the dna-59 mutation does not affect expression of the cou r gene of DNA gyrase, which is another known gene involved in DNA synthesis near the dnaA gene, this mutation is probably in a new gene, dnaN. From analysis of the suppression activities of imm 21[tna dnaA]#2 phage and its deletion derivatives against dnaN59 cells, it is suggested that the expression of the dnaN gene function is reduced by deletion in the dnaA region.  相似文献   

8.
Summary The effect of the dnaN mutation on the growth of single-stranded DNA phages was studied by burst experiments. In HC138 dnaN cells exposed to 42.5° C at 5 min before infection, growth of spherical (microvirid or isometric) phages such as 3, Kh-1 and X174 was partially reduced at the nonpermissive temperature. When infection was performed at 30 min after temperature shift-up, viral replication was completely inhibited at 42.5° C in the dnaN strain but not in a dna + revertant. At 41° C, multiplication of filamentous (inovirid) phages M13 and fd was restricted specifically in HC138 F+ dnaN bacteria. When dnaN cells lysogenic for i21 were grown at 42.5° C for 60 min and then shifted down to 33° C, a burst of i21 occurred with concomitant cellular lysis, manifesting induction of the prophage development.  相似文献   

9.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

10.
Summary + is able to grow in Escherichia coli cells lacking integration host factor (IHF), producing a burst of approximately 25% that produced in IHF+ cells. In vitro, however, we find that the DNA packaging enzyme terminase is strongly dependent on IHF in both cos cleavage reactions and DNA packaging reactions. The cos59 mutation renders dependent on IHF in vivo. The cos59 mutation is a deletion of 3 base pairs at the XmnI site in the cohesive end site (cos) of . Variants of cos59 that were able to grow in the absence of IHF were isolated and found to carry a mutation, called ms1, in the Nu1 gene, which codes for the small subunit of terminase. The Nu1ms1 mutation results in a change of the 40th amino acid of the Nu1 gene product from leucine to phenylalanine. The Nu1ms1 terminase was independent of IHF in packaging reactions in vitro. The results indicate that the mutation either renders terminase: (1) able to utilize some host protein other than IHF, or (2) totally independent of host factors.  相似文献   

11.
Summary A grpE mutation of Escherichia coli K12, which blocks DNA replication of the phage (Saito and Uchida, 1977), was mapped at 56 min on the standard genetic map. A transducing phage, grpE22, carrying the wild type allele of the grpE gene was constructed in vitro. Structures of grpE22 and its viable deletion derivatives were determined by electron microscopic analyses of appropriate heteroduplexes. Proteins coded by the bacterial DNA incorporated into the transducing phages were detected by two-dimensional gel electrophoresis. The results showed that the product of the grpE gene is a weakly acidic protein of molecular weight 24,000. Structural genes for two ribosomal proteins, rplS (L19) and rpsP (S16) were also shown to be carried by grpE22.  相似文献   

12.
Summary A mutant of was isolated that grows in the Escherichia coli himA/gyrB-him320(Ts) double mutant at 42°C; conditions which are non-permissive for wild-type growth. The responsible mutation, ohm1, alters the 40th codon of the Nul reading frame. The Nul and A gene products comprise the terminase protein which cleaves concatameric DNA into unit-length phage genomes during DNA packaging. The Nul-ohm1 gene product acts in trans to support growth in the double himA/gyrB mutant, and cos154 growth in the single himA mutant. The observation that an alteration in Nul suppresses the inhibition of growth in the double himA/gyrB mutant implicates DNA gyrase, as well as integration host factor, in the DNA: protein interactions that occur at the initiation of packaging.  相似文献   

13.
    
Summary Rolling-circle replicating structures which represent late stage DNA replication can be detected among intracellular phage DNA molecules under recombination deficient conditions as well as in wild-type infections. Furthermore, if initiation of infection, then nearly all replicating molecules are rolling-circle, even in the first round. Thus neither genetic recombination nor termination of a round of replication are required for generation of rolling-circle replicating molecules of DNA.  相似文献   

14.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

15.
16.
    
Summary A clone containing a -derived cytoplasmic replicon (a dv-like plasmid) was obtained through thermal selection of a heat-inducible int6 cI857 lysogen. It still contains the original integrated prophage. Such a system can exist in two distinct regulatory phases, E1 and E2, differing both in the gene expression and the genome arrangement. In the E1 phase the expression of gene N is blocked and the plasmid is a heptamer of the fundamental unit 1.26×106 daltons, whereas in E2 phase the N gene is active and the main plasmid component is a tetramer of the same fundamental unit. Reversible transitions between E1 and E2 phases and the reestablishment of the original immune phenotype PA (parental type) accompanied by the loss of the cytoplasmic component of the genome take at relatively high frequencies depending on the growth and storage conditions.  相似文献   

17.
Summary Specialized transducing phages tna (tryptophanase) harboring chromosomal DNA and genetic markers from the dnaA region of the Escherichia coli chromosome were isolated. Transductional analysis showed that some of these tnaA transducing phages carry two genes important in DNA replication, namely the dnaA gene (initiation of chromosome replication) and the gyrB gene (subunit B of DNA gyrase), formerly designated cou R. The following clockwise order of genetic markers was found: uhp, gyrB, dnaA, rimA, tnaA, bglB.The gene-protein relationship was established by the determination of the gene products encoded on the chromosomal DNA of the different tna. A 54 kD and a 91 kD polypeptide appear to be coded for by the dnaA and gyrB genes, respectively; the 91 kD protein is encoded on a region in which coumermycin sensitivity maps and is with respect to electrophoretic behavior identical to subunit B of DNA gyrase. The 54 kD protein is encoded on the region in which different independently isolated dnaA(Ts) mutations (dnaA5, dnaA46, dnaA167, dnaA203, dnaA204, dnaA205, dnaA211, dnaA508) are located. Additional genes which code for polypeptides with hitherto unknown functions were identified and mapped. The acriflavin sensitivity mutation acrB1 was found to be an allele of the gyrB gene (see Note Added in Proof).  相似文献   

18.
Summary Bacteriophage P1 has been shown previously to determine a product ban than can substitute in DNA replication for the protein specified by cistron dnaB of Escherichia coli. However, ban product furnished by P1 bac prophage (ban constitutive) substitutes only poorly for DNA replication in the absence of dnaB product in a strain bearing an unsuppressed amber mutation, dnaB266, as shown by the cryosensitivity of the dnaB266 (P1 bac) lysogen and its unability to support growth. An additional mutation (termed crr) in the P1 bac prophage has been obtained which confers cryoresistance to the sup + dnaB266 (P1 bac crr) lysogen and restores its ability to support growth. ban product produced in P1 bac crr lysogen fulfills all dnaB roles in vivo, especially in the various instances in which ban product expressed in P1 bac lysogens does not. The ban product is expressed constitutively in P1 crr prophage. The crr-1 mutation is tightly linked to the bac-1 and ban-1 mutations and is dominant over crr +. The nature of the crr mutation is discussed: two hypotheses are considered, that of a mutation in the ban gene rendering the ban product more active or that of a site mutation in the ban operon increasing the level of ban expression. Expression of ban product (wild type or altered) leads to interactions with the variously altered dnaB product. Both positive and negative interactions are described. Genetic results presented here suggest that ban and dnaB subunits interact to form hybrid dnaB-like molecules; the average composition of which depends on the relative quantities of ban and dnaB subunits in the cell.  相似文献   

19.
Summary Fragments of the E. coli chromosome that carry the dnaB groPB534 or groPB612 alleles have been cloned into a cosmid vector. The resulting recombinant plasmids contained the genes uvrA, groP (B534 or B612), and lexA. Further subcloning into high copy number plasmids, during which the uvrA and lexA genes were removed successively, yielded a groPB534 and groPB612 DNA fragment of about 2.4 kb each. Both fragments contained an overlapping 1.8 kb segment of DNA in which the sites of all restriction enzymes tested were identical. The size of these dnaB gene fragments were further delimited by deletion analysis.In E. coli groPB534 in which wild-type and A mutants do not replicate (Georgopoulos and Herskowitz 1971) phage replication is rescued if the strain contains the groPB534 gene on high copy number plasmids. On the contrary, in E. coli groPB612, which is temperature-sensitive for its groP character, replication of and A is abolished at 30° C if the strain contains the groPB612 recombinant plasmid. On the other hand, replication of B remains unaffected whether or not the groP strains harbor the isogenic dnaB gene-containing plasmid. The results suggest that within the cell not only the quality but also the relative amounts of dnaB and P protein are crucial for phage replication.  相似文献   

20.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号