首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although capsaicin exhibits antitumor activity, carcinogenic potential has also been reported. To clarify the mechanism for expression of potential carcinogenicity of capsaicin, we examined DNA damage induced by capsaicin in the presence of metal ion and various kinds of cytochrome P450 (CYP) using 32P-5'-end-labeled DNA fragments. Capsaicin induced Cu(II)-mediated DNA damage efficiently in the presence of CYP1A2 and partially in the presence of 2D6. CYP1A2-treated capsaicin caused double-base lesions at 5'-TG-3', 5'-GC-3' and CG of the 5'-ACG-3' sequence complementary to codon 273, a hotspot of p53 gene. DNA damage was inhibited by catalase and bathocuproine, a Cu(I) chelator, suggesting that reactive species derived from the reaction of H2O2 with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP1A2-treated capsaicin in the presence of Cu(II). Therefore, we conclude that Cu(II)-mediated oxidative DNA damage by CYP-treated capsaicin seems to be relevant for the expression of its carcinogenicity.  相似文献   

2.
Although curcumin is known to exhibit antitumor activity, carcinogenic properties have also been reported. To clarify the potentiality of carcinogenesis by curcumin, we have examined whether curcumin can induce DNA damage in the presence of cytochrome P450 (CYP) using [32P]-5(')-end-labeled DNA fragments obtained from genes relevant to human cancer. Curcumin treated with CYP 2D6, CYP1A1, or CYP1A2 induced DNA damage in the presence of Cu(II). CYP2D6-treated curcumin caused base damage, especially at 5(')-TG-3('), 5(')-GC-3('), and GG sequences. The DNA damage was inhibited by both catalase and bathocuproine, suggesting that reactive species derived from the reaction of H(2)O(2) with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2(')-deoxyguanosine was significantly increased by CYP2D6-treated curcumin in the presence of Cu(II). Time-of- flight mass spectrometry demonstrated that CYP2D6 catalyzed the conversion of curcumin to O-demethyl curcumin. Therefore, it is concluded that curcumin may exhibit carcinogenic potential through oxidative DNA damage by its metabolite.  相似文献   

3.
Although capsaicin exhibits antitumor activity, carcinogenic potential has also been reported. To clarify the mechanism for expression of potential carcinogenicity of capsaicin, we examined DNA damage induced by capsaicin in the presence of metal ion and various kinds of cytochrome P450 (CYP) using 32P-5′-end-labeled DNA fragments. Capsaicin induced Cu(II)-mediated DNA damage efficiently in the presence of CYP1A2 and partially in the presence of 2D6. CYP1A2-treated capsaicin caused double-base lesions at 5′-TG-3′, 5′-GC-3′ and CG of the 5′-ACG-3′ sequence complementary to codon 273, a hotspot of p53 gene. DNA damage was inhibited by catalase and bathocuproine, a Cu(I) chelator, suggesting that reactive species derived from the reaction of H2O2 with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine was significantly increased by CYP1A2-treated capsaicin in the presence of Cu(II). Therefore, we conclude that Cu(II)-mediated oxidative DNA damage by CYP-treated capsaicin seems to be relevant for the expression of its carcinogenicity.  相似文献   

4.
Han EH  Hwang YP  Jeong TC  Lee SS  Shin JG  Jeong HG 《FEBS letters》2007,581(4):749-756
Typically, chemopreventive agents either inhibit the cytochrome P450s (CYPs) that are essential for the metabolism of carcinogens or induce phase II detoxifying enzymes. This study examined the chemopreventive effect of eugenol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced DNA damage in MCF-7 cells. Eugenol inhibited the formation of the DMBA-DNA adduct in a dose dependent manner. CYP1A1 and CYP1B1 activity, which catalyze the biotransformation of DMBA, were strongly inhibited by eugenol. Eugenol also suppressed the CYP1A induction by DMBA through decreased aryl hydrocarbon receptor activation and subsequent DNA binding. Furthermore, eugenol increased the expression and activity of NAD(P)H:quinone oxidoreductase (QR), a major detoxifying enzyme for DMBA, through NF-E2 related factor2 binding to antioxidant response element in QR gene. Therefore, eugenol has a potent protective effect against DMBA-induced genotoxicity, presumably through the suppression of the DMBA activation and the induction of its detoxification. These results suggest that eugenol has potential as a chemopreventive.  相似文献   

5.
The mechanism of metal-mediated DNA damage by carcinogenic danthron (1,8-dihydroxyanthraquinone) and anthraquinone was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments obtained from the human c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Danthron caused DNA damage particularly at guanines in the 5'-GG-3', 5-GGGG-3', 5'-GGGGG-3' sequences (damaged bases are underlined) in the presence of Cu(II), cytochrome P450 reductase and the NADPH-generating system. The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine increased with increasing concentration of danthron. On the other hand, carcinogenic anthraquinone induced less oxidative DNA damage than danthron. Electron spin resonance study showed that the semiquinone radical could beproduced by P450 reductase plus NADPH-mediated reduction of danthron, while little signal was observed with anthraquinone. These results suggest that danthron is much more likely to be reduced by P450 reductase and generate reactive oxygen species through the redox cycle, leading to more extensive Cu(II)-mediated DNA damage than anthraquinone. In the case of anthraquinone, its hydroxylated metabolites with similar reactivity to danthron may participate in DNA damage in vivo. We conclude that oxidative DNA damage by danthron and anthraquinone seems to be relevant for the expression of their carcinogenicity.  相似文献   

6.
The mechanism of metal-mediated DNA damage by carcinogenic danthron (1,8-dihydroxyanthraquinone) and anthraquinone was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments obtained from the human c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Danthron caused DNA damage particularly at guanines in the 5′-GG-3′, 5-GGGG-3′, 5′-GGGGG-3′ sequences (damaged bases are underlined) in the presence of Cu(II), cytochrome P450 reductase and the NADPH-generating system. The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine increased with increasing concentration of danthron. On the other hand, carcinogenic anthraquinone induced less oxidative DNA damage than danthron. Electron spin resonance study showed that the semiquinone radical could beproduced by P450 reductase plus NADPH-mediated reduction of danthron, while little signal was observed with anthraquinone. These results suggest that danthron is much more likely to be reduced by P450 reductase and generate reactive oxygen species through the redox cycle, leading to more extensive Cu(II)-mediated DNA damage than anthraquinone. In the case of anthraquinone, its hydroxylated metabolites with similar reactivity to danthron may participate in DNA damage in vivo. We conclude that oxidative DNA damage by danthron and anthraquinone seems to be relevant for the expression of their carcinogenicity.  相似文献   

7.
The debrisoquine/sparteine polymorphism is associated with a clinically important genetic deficiency of oxidative drug metabolism. From 5% to 10% of Caucasians designated as poor metabolizers (PMs) of the debrisoquine/sparteine polymorphism have a severely impaired capacity to metabolize more than 25 therapeutically used drugs. The impaired drug metabolism in PMs is due to the absence of cytochrome P450IID6 protein. The gene controlling the P450IID6 protein, CYP2D6, is located on the long arm of chromosome 22. A pseudogene CYP2D8P and a related gene CYP2D7 are located upstream from CYP2D6. This gene locus is highly polymorphic. After digestion of genomic DNA with XbaI endonuclease, restriction fragments of 11.5 kb and 44 kb represent mutant alleles of the cytochrome CYP2D6 gene locus associated with the PM phenotype. In order to elucidate the molecular mechanism of the mutant allele reflected by the XbaI 11.5-kb fragment, a genomic library was constructed from leukocyte DNA of one individual homozygous for this fragment and screened with the human IID6 cDNA. The CYP2D genes were isolated and characterized by restriction mapping and partial sequencing. We demonstrate that the mutant 11.5-kb allele results from a deletion involving the entire functional CYP2D6 gene. This result provides an explanation for the total absence of P450IID6 protein in the liver of these PMs.  相似文献   

8.
Our earlier studies in vitro have shown that eugenol inhibits liver microsomal monooxygenase activities and carbon tetrachloride (CCl4)-induced lipid peroxidation (Free Rad. Res. 20,253-266,1994). The objective of the present investigation was to study the in vivo protective effect of eugenol against CCI4 toxicity. Eugenol (5 or 25 mg/kg body wt) given orally for 3 consecutive days did not alter the levels of serum glutamic oxalacetic transaminase (SGOTJ, microsomal enzymes such as cytochrome P450 reductase, glucose-6-phosphatase (G-6-Pase) xenobiotic-metabolizing enzymes (aminopyrine-N-demethylase, N-nitrosodimethylamine-demethylase and ethoxyresorufin-O-deethylase) and liver histology. Doses of eugenol (5 or 25 mg/kg) administered intragastrically to each rat on three consecutive days i.e. 48 hr, 24 hr and 30 min before a single oral dose of CCU (2.5 ml/kg body wt) prevented the rise in SGOT level without appreciable improvement in morphological changes in liver. Eugenol pretreatment also did not influence the decrease in microsomal cytochrome P450 content, G-6-Pase and xenobiotic-metabolizing enzymes brought about by CCI4. Since eugenol is metabolized and cleared rapidly from the body, the dose schedule was modified in another experiment. Eugenol (0.2,1.0,5.0 or 25 mg/kg) when given thrice orally i.e. prior to (-1 hr) along with (0 hr) and after (+ 3 hr) the i.p. administration of CCI4 (0.4 ml/kg) prevented significantly the rise in SGOT activity as well as liver necrosis. The protective effect was more evident at 1 mg and 5 mg eugenol doses. However, the decrease in microsomal G-6-Pase activity by CCI4 treatment was not prevented by eugenol suggesting that the damage to endoplasmic reticulum is not protected. The protective effect of eugenol against CC14 induced hepatotoxicity is more evident when it is given concurrently or soon after rather than much before CCU treatment.  相似文献   

9.
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using (32)P-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H(2)O(2) and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation.  相似文献   

10.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

11.
Anti-LKM-1 autoantibodies are directed mostly at cytochrome P450 2D6 (CYP2D6) autoantigen, whose activity ranges from "complete deficiency" to "extensive metabolism" due to genetic polymorphism. We aimed to find any relevance of CYP2D6 alleles to the presence/absence of anti-LKM-1 in Japanese patients with chronic hepatitis C. The frequency of an extensive metabolizer-type allele (CYP2D6*1) in anti-LKM-1-positive patients was higher than that in anti-LKM-1-negative patients (0.800 vs 0.431; P = 0.0035), while the CYP2D6*10 allele with moderately reduced activity was less frequent in the former than the latter (0.050 vs 0.389; P = 0.0069). Moreover, the rate of homozygosity for CYP2D6*1 showed a striking difference between the two groups (70% vs 19%; P = 0.0021). These findings suggest that a genetic predisposition to produce the enzyme CYP2D6 of extensive metabolizer-type is associated with the induction of anti-LKM-1 in chronic hepatitis C patients.  相似文献   

12.
13.
14.
Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5alpha-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.  相似文献   

15.
BackgroundAlcohol consumption is considered to be a major health problem among people living with HIV/AIDS. Our previous reports have shown that ethanol reduced intracellular concentrations of antiretroviral drugs elvitegravir and darunavir in the HIV-1-infected U1 cell line. Ethanol also increased HIV-1 replication despite the presence of elvitegravir. Our previous finding has also shown that the levels of cytochrome P450 enzyme 2E1 (CYP2E1) and oxidative stress in blood monocytes were induced, while the concentration of alcohol in the plasma was reduced in HIV-1-infected alcohol users compared to uninfected alcohol users. However, the role of CYP2E1 in ethanol-enhanced oxidative stress and HIV-1 replication is still unclear.MethodsThis study examined the chronic effects (14 days) of ethanol on HIV viral load, oxidative DNA damage, expression of CYP2E1, expression of antioxidant enzymes (AOEs), expression of reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM). Further, to evaluate the role of CYP2E1 in mediating ethanol-induced viral replication, CYP2E1 siRNA and CYP2E1 selective inhibitor were used in the HIV-1-infected U1 cell line following ethanol treatment.ResultsChronic ethanol exposure demonstrated an increase in oxidative DNA damage and CYP2E1 expression in both non-infected and HIV-1-infected MDM. Our results showed that ethanol chronic exposure increased HIV-1 replication by ~3-fold in HIV-1-infected MDM. This ethanol-enhanced HIV-1 replication was associated with an increased oxidative DNA damage, an increased expression of CYP2E1, and a decreased expression of antioxidant enzyme PRDX6. In HIV-1-infected U1 cell line, we observed a decreased viral replication (~30%) and a decreased DNA damage (~100%) after repression of CYP2E1 by siRNA, upon ethanol exposure. We also observed a decreased viral replication (~25%) after inhibition of CYP2E1 by using selective CYP2E1 inhibitor.ConclusionsThe data suggest that chronic ethanol exposure increases HIV-1 replication in MDM, at least in part, through CYP2E1-mediated oxidative stress. These results are clinically relevant to potentially find effective treatment strategies for HIV-1-infected alcohol users.  相似文献   

16.
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s.  相似文献   

17.
The kinetics of the association between cytochrome P450 (P450) and microsomal epoxide hydrolase (mEH) was studied by means of resonant mirror based on the principle of surface plasmon resonance. The dissociation equilibrium constants (K(D)) for the affinity of P450 enzymes for mEH were estimated by resonant mirror using an optical biosensor cell covalently bound to rat mEH. Comparable K(D) values were obtained for CYP1A1 and 2B1, and these were greater by one order of magnitude than that for the CYP2C11. To clarify the influences of P450 enzymes on the catalytic activity of mEH, the hydrolyzing activity for styrene oxide and benzo(a)pyrene-7,8-oxide [B(a)P-oxide] was analyzed in the presence or absence of P450s. Styrene oxide hydrolysis was activated by all P450s including the CYP1A, 2B, 2C, and 3A subfamilies. In agreement with the association affinity determined by resonant mirror, CYP2C11 tends to have enhanced activity for styrene oxide hydrolysis. On the other hand, B(a)P-oxide hydrolysis was enhanced by only CYP2C11 while CYP1A1 and CYP2B1 had no effect. These results suggest that (1) many P450 enzymes associate nonspecifically with mEH, (2) the CYP2C11 plays a greater role in the association/activation of mEH and (3) the P450-mediated activation of mEH depends upon the substrate of mEH.  相似文献   

18.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

19.
CYP6AB3v1, a cytochrome P450 monooxygenase in Depressaria pastinacella (parsnip webworm), is highly specialized for metabolizing imperatorin, a toxic furanocoumarin in the apiaceous host plants of this insect. Cloning and heterologous expression of CYP6AB3v2, an allelic variant identified in D. pastinacella, reveals that it metabolizes imperatorin at a rate (V(max) of 10.02 pmol/min/pmol of cytochrome P450 monooxygenase (P450)) significantly higher than CYP6AB3v1 (V(max) of 2.41 pmol/min/pmol) when supplemented with even low levels of cytochrome P450 reductase. Comparisons of the NADPH consumption rates for these variants indicate that CYP6AB3v2 utilizes this electron source at a faster rate than does CYP6AB3v1. Molecular modeling of the five amino acid differences between these variants and their potential interactions with P450 reductase suggests that replacement of Val(92) on the proximal face of CYP6AB3v1 with Ala(92) in CYP6AB3v2 affects interactions with P450 reductase so as to enhance its catalytic activity. Allelic variation at this locus potentially allows D. pastinacella to adapt to both intraspecific and interspecific variation in imperatorin concentrations in its host plants.  相似文献   

20.
In the present study, the phenolic compounds eugenol, isoeugenol and safrole were investigated for genotoxicity in the wing spot test of Drosophila melanogaster. The Drosophila wing somatic mutation and recombination test (SMART) provides a rapid means to evaluate agents able to induce gene mutations and chromosome aberrations, as well as rearrangements related to mitotic recombination. We applied the SMART in its standard version with normal bioactivation and in its variant with increased cytochrome P450-dependent biotransformation capacity. Eugenol and safrole produced a positive recombinagenic response only in the improved assay, which was related to a high CYP450-dependent activation capacity. This suggests, as previously reported, the involvement of this family of enzymes in the activation of eugenol and safrole rather than in its detoxification. On the contrary, isoeugenol was clearly non-genotoxic at the same millimolar concentrations as used for eugenol in both the crosses. The responsiveness of SMART assays to recombinagenic compounds, as well as the reactive metabolites from eugenol and safrole were considered responsible for the genotoxicity observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号