首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vacuum infiltration technique was developed that enabled the extraction of apoplastic solution with very little cytoplasmic contamination as evident from a malate dehydrogenase activity of less than 1% in the apoplastic solution relative to that in bulk leaf extracts. The volume of apoplastic water, a prerequisite for determination of the concentration of apoplastic solutes, was determined by vacuum infiltration of indigo carmine with subsequent analysis of the dilution of the dye in apoplastic extracts. Indigo carmine was neither transported across the cell membrane nor significantly adsorbed to the cell walls, ensuring reproducible (SE < 2%) and precise determination of apoplastic water. Analysis of leaves from four different positions on senescing Brassica napus plants showed a similar apoplastic pH of 5.8, while apoplastic NH4+ increased from 1.1 mM in lower leaves to 1.3 mM in upper leaves. Inhibition of glutamine synthetase in young B. napus plants resulted in increasing apoplastic pH from 6.0 to 6.8 and increasing apoplastic NH4+ concentration from 1.0 to 25.6 mM, followed by a marked increase in NH3 emission. Calculating NH3 compensation points for B. napus plants on the basis of measured apoplastic H+ and NH4+ concentrations gave values ranging from 4.3 to 5.9 nmol NH3 mol-1 air, consistent with an estimate of 5.3 [plus or minus] 3.6 nmol NH3 mol-1 air obtained by NH3 exchange experiments in growth chambers. A strong linear relationship was found between calculated NH3 compensation points and measured NH3 emission rates in glutamine synthetase-inhibited plants.  相似文献   

2.
3.
At least four of the intermediate states of Ca2+-ATPase (and presumably ion transport) can be trapped and characterized using water proton relaxation measurements. Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the MgATP analogue Co(NH3)4AMPPCP, a new state for bound Gd3+ with one less water of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected by NMR, the first of which probably represents an intermediate state of ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and corresponds to the highly occluded E1-P state observed with CrATP (Vilsen and Andersen, Biochim. Biophys. Acta 898, 313 (1987).  相似文献   

4.
Although colonic lumen NH(4)(+) levels are high, 15-44 mM normal range in humans, relatively few studies have addressed the transport mechanisms for NH(4)(+). More extensive studies have elucidated the transport of NH(4)(+) in the kidney collecting duct, which involves a number of transporter processes also present in the distal colon. Similar to NH(4)(+) secretion in the renal collecting duct, we show that the distal colon secretory model, T84 cell line, has the capacity to secrete NH(4)(+) and maintain an apical-to-basolateral NH(4)(+) gradient. NH(4)(+) transport in the secretory direction was supported by basolateral NH(4)(+) loading on NKCC1, Na(+)-K(+)-ATPase, and the NH(4)(+) transporter, RhBG. NH(4)(+) was transported on NKCC1 in T84 cells nearly as well as K(+) as determined by bumetanide-sensitive (86)Rb-uptake. (86)Rb-uptake and ouabain-sensitive current measurement indicated that NH(4)(+) is transported by Na(+)-K(+)-ATPase in these cells to an equal extent as K(+). T84 cells expressed mRNA for the basolateral NH(4)(+) transporter RhBG and the apical NH(4)(+) transporter RhCG. Net NH(4)(+) transport in the secretory direction determined by (14)C-methylammonium (MA) uptake and flux occurred in T84 cells suggesting functional RhG protein activity. The occurrence of NH(4)(+) transport in the secretory direction within a colonic crypt cell model likely serves to minimize net absorption of NH(4)(+) because of surface cell NH(4)(+) absorption. These findings suggest that we rethink the present limited understanding of NH(4)(+) handling by the distal colon as being due solely to passive absorption.  相似文献   

5.
J Messinger  U Wacker  G Renger 《Biochemistry》1991,30(31):7852-7862
The effect of redox-active amines NH2R (R = OH or NH2) on the period-four oscillation pattern of oxygen evolution has been analyzed in isolated spinach thylakoids as a function of the redox state Si (i = 0, ..., 3) of the water oxidase. The following results were obtained: (a) In dark-adapted samples with a highly populated S1 state, NH2R leads via a dark reaction sequence to the formal redox state "S-1"; (b) the reaction mechanism is different between the NH2R species; NH2OH acts as a one-electron donor, whereas NH2NH2 mainly functions as a two-electron donor, regardless of the interacting redox state Si (i = 0, ..., 3). For NH2NH2, the modified oxygen oscillation patterns strictly depend upon the initial ratio [S0(0)]/[S1(0)] before the addition of the reductant; while due to kinetic reasons, for NH2OH this dependence largely disappears after a short transient period. (c) The existence of the recently postulated formal redox state "S-2" is confirmed not only in the presence of NH2NH2 [Renger, G., Messinger, J., & Hanssum, B. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., Ed.) Vol. 1, pp 845-848, Kluwer, Dordrecht] but also in the presence of NH2OH. (d) Activation energies, EA, of 50 kJ/mol were determined for the NH2R-induced reduction processes that alter the oxygen oscillation pattern from dark-adapted thylakoids. (e) Although marked differences exist between NH2OH and NH2NH2 in terms of the reduction mechanism and efficiency (which is about 20-fold in favor of NH2OH), both NH2R species exhibit the same order of rate constants as a function of the redox state Si in the nonperturbed water oxidase: kNH2R(S0) greater than kNH2R(S1) much less than kNH2R(S2) much greater than kNH2R(S3) The large difference between S2 and S3 in their reactivity toward NH2R is interpreted to indicate that a significant change in the electronic configuration and nuclear geometry occurs during the S2----S3 transition that makes the S3 state much less susceptible to NH2R. The implications of these findings are discussed with special emphasis on the possibility of complexed peroxide formation in redox state S3 postulated previously on the basis of theoretical considerations [Renger, G. (1978) in Photosynthetic Water Oxidation (Metzner, H., Ed.) pp 229-248, Academic Press, London].  相似文献   

6.
水分吸收过程是根系重要的生理过程。水孔蛋白在根系水分径向运输中起着重要的作用,根系水流导度(Lp)的测定是研究水孔蛋白的重要途径。该研究采用压力流的方法,对相同生长条件下的水曲柳(Fraxinus mandshurica)幼苗根系进行研究,测定了根系在去离子水和不同浓度NH4NO3溶液中的Lp。结果表明:未经处理的水曲柳幼苗根系,Lp随NH4NO3浓度的增加而上升,而且NH4NO3溶液中的Lp比去离子水中的Lp平均高77%;经HgCl2处理后,水曲柳幼苗根系的Lp仍然随NH4NO3浓度的增加而增大,但是根系Lp在去离子水下降了22%,而在NH4NO3溶液中下降了68%,与以前的研究相比发现,经HgCl2处理后,以营养液为吸水基质的根系Lp的降低值普遍高于以去离子水为基质的试验。因此,基质中养分离子的存在对根系中水孔蛋白活性产生了重要的影响,进而影响根系水分的吸收过程。  相似文献   

7.
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.  相似文献   

8.
Plants growing in close association with N(2)-fixing bacteria are able to overcome growth limitations in N-depleted soils. The molecular mechanism by which free-living, N(2)-fixing bacteria promote plant growth is still a matter of debate. By inoculating N-depleted tomato (Lycopersicon esculentum Mill.) plants with Azospirillum brasilense or Azoarcus sp. we could demonstrate the induction of the root NH(+)(4)-transporter gene, LEAMT1;2 (L. esculentum ammonium transporter 1;2), indicating that bacterial NH(+)(4) might be used as an N source under these conditions. Azospirillum brasilense (nif(-)) mutants, which lack the structural nifDK genes, failed to induce LEAMT1;2 expression. This suggests that root-associated N(2)-fixing bacteria do excrete NH(+)(4) to levels that can be sensed by tomato roots and is in agreement with the induction of expression of LEAMT1;2 with as low as > or = 1 microM external NH(+)(4). While peak expression was obtained with 2-5 microM NH(+)(4), a further increase in NH(+)(4) reduced LEAMT1;2-mRNA levels in a concentration-dependent manner. The inhibition of LEAMT1;2 expression by glutamine and the glutamine synthetase blocker L-methionine sulfoximine (MSX) provided evidence for the control of LEAMT1;2 expression by cytoplasmic NH(+)(4) concentration or the plant N status. Since micromolar concentrations of NH(+)(4) strongly increased the LEAMT1;2-mRNA levels, the transported NH(+)(4) ion itself could represent a key signal in the associative interaction between higher plants and N(2)-fixing micro-organisms.  相似文献   

9.
ATP-regulated (K(ATP)) channels are formed by an inward rectifier pore-forming subunit (Kir) and a sulfonylurea (glibenclamide)-binding protein, a member of the ATP binding cassette family (sulfonylurea receptor (SUR) or cystic fibrosis transmembrane conductance regulator). The latter is required to confer glibenclamide sensitivity to K(ATP) channels. In the mammalian kidney ROMK1-3 are components of K(ATP) channels that mediate K(+) secretion into urine. ROMK1 and ROMK3 splice variants share the core polypeptide of ROMK2 but also have distinct NH(2)-terminal extensions of 19 and 26 amino acids, respectively. The SUR2B is also expressed in rat kidney tubules and may combine with Kir.1 to form renal K(ATP) channels. Our previous studies showed that co-expression of ROMK2, but not ROMK1 or ROMK3, with rat SUR2B in oocytes generated glibenclamide-sensitive K(+) currents. These data suggest that the NH(2)-terminal extensions in both ROMK1 and ROMK3 block ROMK-SUR2B interaction. Seven amino acids in the NH(2)-terminal extensions of ROMK1 and ROMK3 are identical (amino acids 13-19 in ROMK1 and 20-26 in ROMK3) and may determine ROMK-SUR2B interaction. We constructed a series of hemagglutinin-tagged ROMK1 NH(2)-terminal deletion and substitution mutants and examined glibenclamide-sensitive K(+) currents in oocytes when co-expressed with SUR2B. These studies identified an amino acid triplet "IRA" within the conserved segment in the NH(2) terminus of ROMK1 and ROMK3 that blocks the ability of SUR2B to confer glibenclamide sensitivity to the expressed K(+) currents. The position of this triplet in the ROMK1 NH(2)-terminal extension is also important for the ROMK-SUR2B interactions. In vitro co-translation and immunoprecipitation studies with hemagglutinin-tagged ROMK mutants and SUR2B indicted that direct interaction between these two proteins is required for glibenclamide sensitivity of induced K(+) currents in oocytes. These results suggest that the IRA triplet in the NH(2)-terminal extensions of both ROMK1 and ROMK3 plays a key role in subunit assembly of the renal secretary K(ATP) channel.  相似文献   

10.
R Mei  C F Yocum 《Biochemistry》1991,30(31):7836-7842
Calcium is required for oxidation of water to molecular oxygen by photosystem II; the Ca2+ demand of the reaction increases upon removal of 23- and 17-kDa extrinsic polypeptides from detergent-derived preparations of the photosystem. Employing the manganese reductant NH2OH as a probe to examine the function of Ca2+ in photosystem II reveals that (1) Ca2+ slows the rate of NH2OH inhibition of O2 evolution activity, but only in photosystem II membranes depleted of extrinsic proteins, (2) other divalent cations (Sr2+, Cd2+) that compete for the Ca2+ site also slow NH2OH inhibition, (3) Ca2+ is noncompetitive with respect to NH2OH, (4) in order to slow inhibition, Ca2+ must be present prior to the initiation of NH2OH reduction of manganese, and (5) Ca2+ appears not to interfere with NH2OH reduction of manganese. We conclude that the ability of Ca2+ to slow the rate of NH2OH inhibition arises from the site in photosystem II where Ca2+ normally stimulates O2 evolution and that the mechanism of this phenomenon arises from the ability of Ca2+ or certain surrogate metals to stabilize the ligation environment of the manganese complex.  相似文献   

11.
Visible light decomposition of aqueous NH3 to N2 was investigated using a photocatalyst aqueous solution based on molecular photoelectron relay systems of either sensitizer (tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/potassium peroxodisulfate(K(2)S(2)O(8)) or Ru(bpy)3(2+)/methylviologen dichloride(MV2+)/O2, capable of using visible light instead of UV-driven semiconductors such as TiO2. It was confirmed by using an in situ visible absorption spectral change under irradiation that the Ru(II) complex is oxidized to the Ru(III) complex by K(2)S(2)O(8), and that the Ru(III) complex formed is stable without NH3, while the added NH3 was oxidized by the Ru(III) complex to produce the Ru(II) complex. In the presence of 1 mM NH3 aqueous solution, the Ru(III) complex was the predominant species under the photostationary state, but in the presence of 100 mM NH3, Ru(II) predominated. Gas-chromatographic analysis of the gaseous phase in the presence of 8.1 M NH3 showed that the photochemical oxidation of ammonia yielded N2. It was also demonstrated by using the in situ visible absorption spectrum under irradiation of the NH3 (1 M)/Ru(bpy)3(2+) (0.1 mM)/MV2+ (10 mM) system under Ar that MV+* is accumulated, showing that NH3 works as an electron donor for MV+* accumulation with simultaneous formation of the oxidized product of ammonia ((NH3)ox) without producing N2. It was suggested that the reduced product (MV+*) and the oxidized product ((NH3)ox) are in a kind of dynamic equilibrium prohibiting further oxidation of (NH3)ox by Ru(bpy)3(3+) to N2. In the O2 atmosphere, the oxidation of MV+* to MV2+ takes place to accumulate Ru(III) complex, so that (NH3)ox was further oxidized to N2. The high activity of IrO2 as a cocatalyst in this system was demonstrated.  相似文献   

12.
Binding and endocytosis of alpha 2-macroglobulin-plasmin complexes   总被引:1,自引:0,他引:1  
K A Ney  S Gidwitz  S V Pizzo 《Biochemistry》1985,24(17):4586-4592
The clearance of 125I-labeled alpha 2-macroglobulin-plasmin complexes (125I-alpha 2M-PM) from mouse circulation is slower than that of 125I-labeled alpha 2M-methylamine complexes (125I-alpha 2M-CH3NH2). In addition, clearance of 125I-alpha 2M-PM is biphasic, but that of 125I-alpha 2M-CH3NH2 follows simple first-order kinetics. Treatment of alpha 2M-PM with trypsin yields a complex that clears like alpha 2M-CH3NH2. Complexes of alpha 2M with Val442-plasmin (alpha 2M-Val442-PM) were prepared; alpha 2M-Val442-PM has a stoichiometry of 2 mol of Val442-PM to 1 mol of alpha 2M and also clears like alpha 2M-CH3NH2. In vitro 4 degrees C binding inhibition studies with mouse peritoneal macrophages show that alpha 2M-CH3NH2, alpha 2M-PM, trypsin-treated alpha 2M-PM, and alpha 2M-Val442-PM bind with the same affinity, apparent Kd = 0.4 nM. The binding isotherms at 4 degrees C are the same for 125I-alpha 2M-CH3NH2, 125I-alpha 2M-PM, and 125I-trypsin-treated alpha 2M-PM in both mouse peritoneal macrophages and 3T3-L1 fibroblasts. The Scatchard plots for the binding isotherms in macrophages were curved; those in 3T3-L1 fibroblasts were linear with an apparent Kd of 0.48 nM and a receptor activity of 140 fmol/mg of cell protein for alpha 2M-CH3NH2, an apparent Kd of 0.29 nM and a receptor activity of 110 fmol/mg of cell protein for alpha 2M-PM, and an apparent Kd of 0.35 nM and a receptor activity of 210 fmol/mg of cell protein for trypsin-treated alpha 2M-PM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Proteins containing a classical NLS are transported into the nucleus by the import receptor importin beta, which binds to cargoes via the adaptor importin alpha. The import complex is translocated through the nuclear pore complex by interactions of importin beta with a series of nucleoporins. Previous studies have defined a nucleoporin binding region in the NH2-terminal half of importin beta. Here we report the identification of a second nucleoporin binding region in its COOH-terminal half. Although the affinity of the COOH-terminal region for nucleoporins is dramatically weaker than that of the NH2-terminal region, sets of mutations that perturb the nucleoporin binding of either region reduce the nuclear import activity of importin beta to a similar extent ( approximately 50%). An importin beta mutant with a combination of mutations in the NH2- and COOH-terminal regions is completely inactive for nuclear import. Thus, importin beta possesses two nucleoporin binding sites, both of which are important for its nuclear import function.  相似文献   

14.
While the primary role of the plasma protein alpha 2-macroglobulin (alpha 2M) appears to be related to its proteinase inhibitory activity, alpha 2M has been reported to regulate the immune response in vitro. Previous studies have demonstrated that, although native alpha 2M has no effect on macrophage function, proteinase- or CH3NH2-treated alpha 2M antagonize the IFN-gamma-induced expression of class II major histocompatibility complex (Ia) antigens on mouse peritoneal macrophages. In this investigation, we examined the effects of alpha 2M-CH3NH2 on the IFN-gamma-induced expression of macrophage Ia antigens by indirect immunofluorescence microscopy, radioimmunoassay, and immunoprecipitation of biosynthetically-labelled Ia. While alpha 2M-CH3NH2 suppressed the IFN-gamma induced increase in the percentage of Ia-positive macrophages detected by immunofluorescence microscopy, alpha 2M-CH3NH2 had no effect on the average of number of Ia molecules expressed per cell as detected by radioimmunoassay. In addition, alpha 2M-CH3NH2 had no effect on the ability of IFN-gamma to induce biosynthesis of Ia. Microscopic examination of IFN-gamma-treated macrophages revealed that treatment with alpha 2M-CH3NH2 prevented IFN-gamma-induced changes in macrophage morphology. IFN-gamma-treatment of elongated inflammatory macrophages was associated with the generation of round cells which possessed few cytoplasmic projections. By contrast, addition of alpha 2M-CH3NH2 to the incubation prevented the IFN-gamma-induced morphological changes, and the cells remained elongated with irregular cytoplasmic borders. We postulate that alpha 2M-CH3NH2 decreases the IFN-gamma-induced expression of Ia by preventing morphological changes in macrophages, resulting in the distribution of existing Ia over a larger surface area. As a consequence of this, the perceived fluorescence intensity of the bound antibody is lowered and the cells appear to be Ia-negative.  相似文献   

15.
16.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

17.
alpha 2-Macroglobulin-methylamine (alpha 2M-CH3NH2) was digested with papain at pH 5.0. The major 600 kDa fragment was purified by molecular-exclusion chromatography. In a non-denaturing gel-electrophoresis system, the 600 kDa fragment migrated in a single band at a rate that was comparable with that for the untreated alpha 2M-CH3NH2. The elution volume of the 600 kDa fragment on Superose-6 was slightly increased. In primary cultures of rat hepatocytes, cellular uptake of 125I-alpha 2M-CH3NH2 was not affected by the 600 kDa fragment, confirming the results of other investigators. The 600 kDa fragment was negatively stained with uranyl formate and analysed by transmission electron microscopy. The major structural characteristics of the parent protein (alpha 2M-CH3NH2) remained intact. The most common image included prominent lateral walls and two centrally located regions of stain exclusion termed 'paddle structures'. The distance between the paddle structures was equivalent in alpha 2M-CH3NH2 and the 600 kDa fragment [approximately 13.5 nm (135 A)]. By contrast, the lateral walls in the 600 kDa fragment were decreased in length by approximately 0.37 nm (37 A) (19%). It is proposed that the 600 kDa structure retains the 'hollow cylinder' shape of alpha 2M-CH3NH2. The structure of the cylinder is formed by the lateral walls and four paddle structures (only two are imaged, owing to overlapping). The paddle structures in the 600 kDa fragment are intact and relatively closer to the apices of the molecule, owing to the decrease in lateral wall length. Since the alpha 2M receptor-binding sites are removed by papain digestion, the studies presented here support the location of the receptor-binding sites near the apices of the lateral walls.  相似文献   

18.
Experiments are described on flash-induced luminescence of isolated spinach chloroplasts after addition of NH4Cl. The results indicate a binding of NH3, presumably in competition with water, in the oxidation states S2 and S3, i.e. the states reached upon illumination of dark-adapted material with one and two flashes, respectively. In the initial state S1, no binding of NH3 occurs. In state S2 the binding of ammonia is rapid (half-time about 0.5 s) and rapidly reversible; in state S3 the binding is slower (half-time about 10 s) and slowly reversible. NH3 bound to S4 prevents the oxidation of water. NH3 bound to S2 decreases the rate of the back reaction of reduced primary acceptor (Q-), indicating a charge stabilization, i.e. a decrease in the redox potential of S2 due to interaction with ammonia. In Tris-washed chloroplasts, the stability of the positive charge generated in a flash is much smaller than in normal chloroplasts and not increased by NH3. On the basis of these observations it is postulated that, in the absence of NH3, states S2 and S3 are stabilized by manganese-coordinated, bound water.  相似文献   

19.
Water proton nuclear relaxation measurements are used to detect and characterize four distinct intermediate states for Gd3+ bound to Ca2+ sites of sarcoplasmic reticulum Ca2+-ATPase in complexes with ATP analogues. In the absence of nucleotides, Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the nonhydrolyzable ATP analogue, Co(NH3)4AMPPCP, a new state for bound Gd3+ (still occluded and with fewer waters of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected in the NMR studies. The first of these probably represents an intermediate state for bound Gd3+ during ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and is probably analogous to the highly occluded E1-P state observed with CrATP [(1987) Biochim. Biophys. Acta 898, 313-322].  相似文献   

20.
The objective of this study was to examine whether 12 h of light exposure would lead to an increase in the pH of and a decrease in the concentration of total ammonia in the extrapallial fluid of the giant clam Tridacna squamosa. We also aimed to elucidate indirectly whether movements of ammonia and/or protons (H(+)) occurred between the extrapallial fluid and the outer mantle epithelium. The pH of the extrapallial fluid of T. squamosa exposed to 12 h of light was significantly higher than that of clams exposed to 12 h of darkness. Conversely, the total ammonia concentration in the extrapallial fluid of the former was significantly lower than that of the latter. In addition, the glutamine content in the mantle adjacent to the extrapallial fluid of clams exposed to 12 h of light was significantly greater than that of clams exposed to 12 h of darkness. These results suggest that in the extrapallial fluid of T. squamosa exposed to light, NH(3) combined with H(+) as NH(+)(4) and that NH(+)(4) was transported into the mantle and used as a substrate for glutamine formation. Injection of NH(4)Cl into the extrapallial fluid led to an instantaneous increase in the total ammonia concentration therein, but the total ammonia concentration decreased subsequently and returned to the control value within 1 h. This is in support of the proposition that NH(+)(4) could be transported from the extrapallial fluid to the mantle. Injection of HCl into the extrapallial fluid led to an instantaneous decrease in the pH of the extrapallial fluid. However, there was a significant increase in pH within 1 h in light or darkness, achieving a partial recovery toward the control pH value. The increase in pH within this 1-h period in light or darkness was accompanied by a significant decrease in the total ammonia concentration in the extrapallial fluid, which supports the proposition that H(+) could be transported in combination with NH(3) as NH(+)(4). Therefore, our results prompt a reexamination of the previous proposition that the removal of H(+) by NH(3) can facilitate calcification in molluscs in general and an investigation of the relationship between H(+) removal through NH(+)(4) transport and light-enhanced calcification in T. squamosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号