首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
淡水鱼类可溶性谷胱甘肽S-转移酶(sGST)在微囊藻毒素去毒代谢过程中具有独特 的关键作用,因而也称为微囊藻毒素去毒酶. 从淡水食毒藻鱼类鲢鱼(Hypophthalmichthys molitrix)肝脏通过简并引物克隆微囊藻毒素去毒酶基因cDNA核心序列,应用5′RACE和3′RACE技术分别扩增该序列的5′末端和3′末端序列,最后通过序列拼接获得鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全序列. 序列分析结果表明,鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全长920 bp,其中5′-UTR长74 bp,3′-UTR长174 bp,编码区长672 bp,编码223个氨基酸. 应用基因组步行法,在鲢鱼克隆得到淡水鱼类微囊藻毒素去毒酶基因5′侧翼区878 bp序列. 与哺乳动物及海水鱼sGST基因不同,鲢鱼微囊藻毒素去毒酶基因的5′侧翼区,发现存在多个脂多糖反应元件(LPSRE),表明来源于毒藻的脂多糖可能对鲢鱼微囊藻毒素去毒酶基因表达有潜在调控作用.  相似文献   

4.
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N‐ or P‐limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large‐scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl‐a)] were carried out in 45 mid‐lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl‐a. In separate nutrient–chl‐a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl‐a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl‐a : TP was not influenced by TN : TP, while chl‐a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a ‘cut‐off’ TN : TP ratio to identify a limiting nutrient for a multi‐species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) >100 kg ha?1 had significantly higher chl‐a and lower Secchi depth than those with yields <100 kg ha?1. TP–chl‐a and TP–Secchi depth relationships are not significantly different between lakes with yields >100 kg ha?1 or <100 kg ha?1. These results indicate that the fish failed to decrease chl‐a yield or enhance ZSD. Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.  相似文献   

5.
Bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix have been two economically important aquaculture species in China for centuries. In the past decades, bighead and silver carp have been introduced from the Yangtze River to many river systems in China, including the Pearl River, in annual, large-scale, stocking activities to enhance wild fisheries. Nonetheless, few studies have assessed the ecological or genetic impacts of such introductions on native conspecific fish populations. An mtDNA D-loop segment of 978 bp from 213 bighead carp samples from 9 populations and a 975 bp segment from 204 silver carp samples from 10 populations were obtained to evaluate genetic diversity and population integrity. Results from a haplotype network analysis revealed that most haplotypes of the Pearl River clustered with those of Yangtze River origin and only a small proportion were distinct, suggesting that both the native Pearl River bighead and silver carp populations are currently dominated by genetic material from the Yangtze River. The genetic diversity of Pearl River populations is high in both species because of this inter-population gene flow, but the diversity of native Pearl River populations is low. To preserve the native genetic diversity, stocking of non-native fingerlings should cease immediately and native Pearl River bighead and silver carp fish farms should be established. This research demonstrates the danger to native biodiversity across China because of the substantial, ongoing stock-enhancement activities without prior genetic assessment.  相似文献   

6.
Invasive silver carp (Hypothalmichthys molitrix) occurs throughout much of the Mississippi River and threatens the Laurentian Great Lakes. To quantify habitat selection relative to river flow and potential phytoplankton food, 77 adult silver carp were implanted with ultrasonic transmitters during spring 2008 through spring 2009 in adjacent upstream dammed and downstream undammed reaches (48 km total) of the Mississippi River. Sixty-seven percent of the fish were located. Selection of major river habitat features (dammed vs. undammed, backwaters, channel border, wing dikes, island side channels, and the main channel) was quantified. Flow rates and chlorophyll a concentration were compared between silver carp locations and random sites. Foregut chlorophyll a concentrations plus presence of macrozooplankton and detritus of 240 non-tagged silver carp were quantified. About 30% of silver carp moved upstream into the dammed reach, where average flow was slower and chlorophyll a concentration was higher. Silver carp selected wing dike areas of moderate flow (about 0.3 m/s) and elevated chlorophyll a (about 7 μg/L) relative to random sites. No silver carp occurred in areas where flow was absent. Wing dikes were preferred while the main channel was avoided. Chlorophyll a concentrations in guts were positively related to temperature and were unrelated to flow or river chlorophyll a concentration. Macrozooplankton and detritus were rare in guts. Silver carp seek areas of low flow and successfully forage across a range of temperatures, flows, and chlorophyll a concentrations that occur in rivers and large lakes.  相似文献   

7.
8.
Flood discharge results in total dissolved gas (TDG) supersaturation downstream of a dam during the flood period. Fish suffer death from gas bubble disease (GBD) caused by TDG supersaturation. Nonetheless, current studies mainly attach importance to the survival of benthic fish affected by TDG supersaturation in the Yangtze River in China. Few studies have attempted to investigate the survival of pelagic fish influenced by TDG supersaturated water and compare the tolerance characteristics to TDG supersaturation between benthic and pelagic fish. To identify the survival of fish species that inhabit the various water layers affected by TDG supersaturation, silver carp (Hypophthalmichthys molitrix) (pelagic fish) and common carp (Cyprinus carpio) (benthic fish) were chosen to conduct an acute exposure experiment of four different TDG supersaturation levels (125%, 130%, 135% and 140%). The findings illustrated that the two fish species both exhibited evident aberrant behaviours of maladjustment in TDG supersaturated water. Obvious GBD symptoms were also found in the test fish. The survival probability of silver carp and common carp decreased with increasing levels of TDG supersaturation. The median survival time (ST50) values of the silver carp exposed to four levels of TDG supersaturated water (125%, 130%, 135% and 140%) were 26.84, 7.96, 5.56 and 3.62 h, respectively, whereas the ST50 values of common carp were 53.50, 26.00, 16.50 and 11.70 h, respectively. When compared with common carp, silver carp had a weaker tolerance to TDG-supersaturated water and were vulnerable to GBD. It shows that levels above 125% are not safe for common carp survival. In terms of the tolerance threshold value, silver carp merits further investigation because it showed lower tolerance to TDG than did common carp.  相似文献   

9.
1. There is much concern that filter‐feeding Asian carp will invade the Laurentian Great Lakes and deplete crucial plankton resources. We developed bioenergetic models, using parameters from Asian carp and other fish species, to explore the possibility that planktonic food resources are insufficient to support the growth of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in the Great Lakes. 2. The models estimated basic metabolic requirements of silver and bighead carp under various body sizes, swimming speeds and reproductive stages. These requirements were then related to planktonic food resources and environmental temperature to predict when and where silver and bighead carp may survive in the Great Lakes, and how far they may travel. 3. Parameter values for respiration functions were derived experimentally in a coordinated study of silver and bighead carp, while consumption parameters were obtained from the literature on silver carp. Other model parameters lacking for Asian carp, such as those for egestion and excretion, were obtained from the literature on other fish species. 4. We found that full‐sized bighead carp required 61.0 kJ d?1 just to maintain their body mass at 20 °C, approximately equivalent to feeding in a region with 255 μg L?1 macrozooplankton (dry) or 10.43 μg L?1 chlorophyll a. Silver carp energy requirements were slightly higher. 5. When applied to various habitats in the Great Lakes, our results suggest that silver and bighead carp will be unable to colonise most open‐water regions because of limited plankton availability. However, in some circumstances, carp metabolism at lower temperatures may be low enough to permit positive growth even at very low rations. Positive growth is even more likely in productive embayments and wetlands, and the modelled swimming costs in some of these habitats suggest that carp could travel >1 km d?1 without losing biomass. 6. The simulation (and firmly hypothetical) results from this modelling study suggest when and where Asian carp could become established in the Great Lakes. Given the potential consequences to Great Lakes ecosystems if these filter feeders do prove capable of establishing reproducing populations, efforts to keep Asian carp out of the Great Lakes must not be lessened. However, we do encourage the use of bioenergetic modelling in a holistic approach to assessing the risk of Asian carp invasion in the Great Lakes region.  相似文献   

10.
A mesocosm experiment was conducted to assess the impact of moderate silver carp (Hypophthalmichthys molitrix) biomass (41 g m–3 or 850 kg ha–1) on the plankton community and water quality of eutrophic Paranoá Reservoir (Brasília, Brazil). Microzooplankton (copepod nauplii and rotifers <200 m), netphytoplankton (> 20 m), total phytoplankton biomass (expressed as chlorophyll-a) and net primary productivity were significantly reduced by silver carp. Apart from increased nitrogen in the sediment, nutrients and chemical properties of the water were not affected by fish presence. The observed improvements in water quality suggest that stocking silver carp in Paranoá Reservoir to control blue-green algae is a promising biomanipulation practice.  相似文献   

11.
12.
13.
14.
The toll‐like receptors (TLR) tlr22 was identified and characterized for the first time in one of the economically most important freshwater fish species in China, Megalobrama amblycephala. The full‐length cDNA (4039 bp) of M. amblycephala tlr22 contains an open reading frame of 2706 bp, encoding a 901 amino‐acid long polypeptide. The putative polypeptide contains 16 leucine‐rich repeat (LRR) motifs, an LRR C‐terminal, a transmembrane region and a cytoplasmic toll–interleukin‐1 receptor (TIR) domain. Phylogenetic analyses revealed that M. amblycephala Tlr22 shared the closest relationship with a grass carp ortholog. tlr22 was constitutively expressed in nine tissues and during 10 developmental stages studied, albeit with varying expression levels. Along with many pathological changes observed after Aeromonas hydrophila bacterium infection, tlr22 and myd88 mRNA were significantly upregulated in blood, head kidney, spleen and intestine, indicating that tlr22 is involved in the immune response. These results provide an insight into tlr22 regulation mechanisms in the innate immune response to bacterial infection.  相似文献   

15.
Mátyás  Kálmán  Oldal  Imre  Korponai  János  Tátrai  István  Paulovits  Gábor 《Hydrobiologia》2003,504(1-3):231-239

Effects of different fish communities on the proportion of different nitrogen and phosphorous forms and the amount of phytoplankton (chlorophyll a) were examined in two consecutive years (1992–1993) in three Hungarian shallow water reservoirs (Cassette and outer reservoir of the Kis–Balaton Water Protection System, and Marcali reservoir). Possible interactions between nutrient concentrations and the amount of phytoplankton in these reservoirs were also examined. Considerable differences in the proportions of different nutrient forms were observed between the three test sites, which could be explained by the presence of different fish stocks in these reservoirs. In the Cassette, the fish biomass necessary for a water quality improvement was around 50 kg ha−1. Phytoplankton biomass was controlled by the zooplankton, consequently chlorophyll a concentrations decreased considerably, while those of dissolved nutrients significantly increased. In the outer reservoir, phytoplankton was controlled bottom-up, since the 250 kg ha−1 fish biomass was larger than the critical value due to the high proportion of planktivorous species. Chlorophyll a concentrations were high, and nutrients were mainly in particulate form (in algal cells). In the Marcali reservoir, the recently introduced silver carp population could not control fully the phytoplankton. The biomass of phytoplankton decreased only slightly, while its composition changed considerably. Although biomanipulation with silver carp is suitable for ceasing cyanobacterial blooms, reduction of the amount of planktivorous fish seems to be a more adequate method for increasing water transparency, rather than introduction of phytoplankton feeding fish.

  相似文献   

16.
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m−3) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 μm fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass.  相似文献   

17.
18.
This paper reports on seasonal changes in stable carbon and nitrogen isotope ratios of seston and muscle tissue of silver carp and bighead carp during 2004 and 2005, focusing primarily on the carbon sources and trophic relationships among phytoplankton, zooplankton and silver carp and bighead carp in a large fish pen of Meiliang Bay (Lake Taihu, China). δ13C showed a minimal value in March 2005 and a maximal value in August 2005 in seston both inside and outside the pen, whereas δ15N of seston showed the minimum in winter and the maximum during algal blooms. A positive correlation between δ13C of silver carp and that of seston suggested that temporal variation of δ13C in seston was preserved in fish via the food chain. The differences of δ13C among seston, zooplankton and muscle tissue of silver carp and bighead carp ranged only 0.2–1.7%, indicating that plankton production was the primary food source of filter-feeding fishes. According to a mass balance model, we estimated that the contributions of zooplankton to the diets of silver carp and bighead carp were 45.7% and 54.3%, respectively, based on the δ15N values of zooplankton and planktivorous fishes.  相似文献   

19.
The arrival of non‐native fishes in the Levant Basin began in the late 19th century. Whereas the presence of most of the 40 non‐native freshwater fishes stem from intentional introductions, either for aquaculture or pest control, the 62 species of non‐native marine fishes arrived by natural dispersal via the Suez Canal. Of the non‐native freshwater species, five have established successful breeding populations (mosquitofish Gambusia affinis, common carp Cyprinus carpio, crucian carp Carassius carassius, swordtail Xiphophorus hellerii and rainbow trout Oncorhynchus mykiss), and seven are regularly stocked in natural habitats (thinlip mullet Liza ramada, flathead mullet Mugil cephalus, European eel Anguilla anguilla, grass carp Ctenopharyngodon idella, Asian silver carp Hypophthalmichthys molitrix, bighead carp Aristichthys nobilis, black carp Mylopharyngodon piceus). Some non‐native species appear to have out‐competed native species. Gambusia affinis may have caused the extirpation of two native cyprinid fishes from the Qishon River basin (Levant silver carp Hemigrammocapoeta nana and common garra Garra rufa) and the southern Dead Sea (endemic Sodom's garra G. ghoerensis). The opening of the Suez Canal in 1869 allowed entry into the eastern Mediterranean of Indo‐Pacific and Erythrean biota, with the latter now dominating the community structure (50–90% of fish biomass) and function (altered native food web) of the Levantine littoral and infra‐littoral zones. The process has accelerated in recent years concurrent with a warming trend of the seawater. Record numbers of newly discovered non‐native species is leading to the creation of a human‐assisted Erythrean biotic province in the eastern Mediterranean.  相似文献   

20.
The genome of the Friend murine leukemia virus (Fr‐MLV) contains a 5′ splice site (5′ss) located at 205 nt and a 3′ss located at 5489 nt. In our previous studies, it was shown that if the HindIII–BglII (879–1904 bp) fragment within gag is deleted from the proA8m1 vector, which carries the entire Fr‐MLV sequence, then cryptic splicing of env‐mRNA occurs. Here, attempts were made to identify the genomic segment(s) in this region that is/are essential to correct splicing. First, vectors with a serially truncated HindIII–BglII fragment were constructed. The vector, in which a 38 bp fragment (1612–1649 bp) is deleted or reversed in proA8m1, only produced splice variants. It was found that a 38 nt region within gag contains important elements that positively regulate splicing at the correct splice sites. Further analyses of a series of vectors carrying the 38 bp fragment and its flanking sequences showed that a region (1183–1611 nt) upstream of the 38 nt fragment also contains sequences that positively or negatively influence splicing at the correct splice sites. The SphI–NdeI (5140–5400 bp) fragment just upstream of the 3′ss was deleted from vectors that carried the 38 bp fragment and its flanking sequences, which yielded correctly spliced mRNA; interestingly, these deleted vectors showed cryptic splicing. These findings suggest that the 5140–5400 nt region located just upstream of the 3′ss is required for the splicing function of the 38 nt fragment and its flanking sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号