首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p38 MAPK在小鼠睾丸不同发育阶段的表达和定位   总被引:1,自引:0,他引:1  
为探讨丝裂原活化蛋白激酶p38 MAPK在小鼠睾丸不同发育阶段的表达,应用蛋白质免疫印迹杂交技术和免疫组织化学SABC法检测1至7周龄小鼠睾丸p38 MAPK的表达、定位及发育变化,并通过图像分析技术对免疫组织化学结果进行统计学分析。免疫印迹杂交发现,p38 MAPK在2~7周龄小鼠睾丸中均有表达。免疫组织化学结果显示,在2周龄小鼠睾丸曲细精管上皮中即可观察到p38 MAPK免疫阳性反应,免疫反应阳性细胞为精原细胞;3、4、5周龄小鼠睾丸仅有个别曲细精管上皮可见p38 MAPK免疫阳性反应;6、7周龄小鼠睾丸中p38 MAPK表达较丰富,免疫反应阳性细胞为精原细胞和初级精母细胞,免疫阳性反应物均主要位于细胞核内。在7周龄小鼠睾丸中还可见到部分间质细胞的细胞质亦呈p38 MAPK阳性。这些结果提示,p38 MAPK可能对生精细胞的增殖分化具有调控作用。  相似文献   

2.
3.
4.
p38 MAPK介导高糖诱导的肾小管上皮细胞向间充质细胞转变   总被引:2,自引:0,他引:2  
本文旨在观察p38MAPK与高糖诱导的肾小管上皮细胞向间充质细胞转变之间的关系。将雄性Sprague—Dawley(SD)大鼠随机分为对照组、糖尿病组、胰岛素治疗组,用免疫组织化学、Western blot检测p38MAPK和磷酸化p38MAPK(P—p38MAPK)蛋白表达。采用机械分离和酶消化获取SD大鼠肾小管节段,进行肾小管上皮细胞培养,将肾小管上皮细胞分为对照组、高渗组(20mmol/L D—mannitol)、高糖组(20mmol/L D—glucose)和SB202190(p38MAPK特异性抑制剂)+高糖组,处理72h后收集细胞,用免疫细胞化学检测α-平滑肌肌动蛋白(α—smooth muscleactin,α-SMA)、p-p38MAPK和Snaill蛋白表达,Western blot检测p38MAPK、p-p38MAPK、Snaill、转化生长因子β1(transforming growth factor—β1,TGF-β1)、α-SMA和E-cadherin的表达,RT-PCR检测α-SMA和E-cadherin mRNA的表达。体内和体外结果均显示,高糖状态激活了p38MAPK,这种活化作用在体内可因胰岛素控制血糖而被消除,在体外可被p38MAPK特异性抑制剂SB202190显著抑制;高糖组α-SMA蛋白和mRNA在原代培养肾小管上皮细胞的表达较对照组分别增加12倍和8倍(P〈0.01),SB202190处理组其表达则较高糖组分别减少67%和50%(P〈0.01)。SB202190不影响TGF—β1蛋白表达,但下调Snaill蛋白表达,并部分恢复高糖组E—cadherin蛋白和mRNA的表达。上述结果提示,p38MAPK可能通过转录因子Snaill介导高糖诱导的肾小管上皮细胞向间充质细胞转变。  相似文献   

5.
p38 MAPK signaling during murine preimplantation development   总被引:7,自引:0,他引:7  
Mitogen-activated protein kinase (MAPK) pathways mediate some important cellular processes and are likely to also regulate preimplantation development. The role of p38 MAP kinase signaling during murine preimplantation development was investigated in the present study. p38 MAPK, p38-regulated or -activated kinase (PRAK; MK5), map kinase-activated protein kinase 2 (MK2), and heat shock protein 25 (hsp25) mRNAs and proteins were detected throughout preimplantation development. Two-cell stage embryos cultured in the presence of SB220025 and SB203580 (specific inhibitors of p38 MAPK alpha/beta), progressed to the eight-cell stage with the same frequency as controls; however, treated embryos halted their development at the 8- to 16-cell stage. In addition, embryos treated with p38 MAPK inhibitors displayed a complete loss of MK2 and hsp25 phosphorylation and also a complete loss of filamentous actin as indicated by the absence of rhodamine-phalloidin staining. In these inhibitor-treated groups, the embryos were composed of a mixture of compacting and noncompacting cells, and the embryos were one to two cell divisions behind controls. Treated embryos remained viable as the developmental blockade was rescued by removing embryos from the drug treatment and placing them in drug-free medium until they progressed to the blastocyst stage. This study demonstrates that p38 MAPK activity is required to support development through the murine preimplantation interval.  相似文献   

6.
巨噬细胞免疫调变信号:Raf-1,MAPK p44,MAPK p42和p38 MAPK的研究   总被引:2,自引:0,他引:2  
为了了解巨噬细胞免疫调变机理,我们应用LPS和PMA处理小鼠抑制性巨噬细胞,观察到Ras下游信号分子Raf-1,分裂原激活蛋白激酶MAPK p44,MAPK p42和p38 MAPK均被活化,发现forskolin能增强p38 MAPK的活性,进一步提示PKC和PKA途径增强了p38 MAPK的磷酸化效应,为我们了解LPS如何激活p38 MAPK信号通路提供了一个新的机会。  相似文献   

7.
Skeletal muscle differentiation is marked by enhanced myotube formation and increased cytoskeletal rearrangement. Actin, a cytoskeletal protein is involved in various cellular functions such as glucose transport, intracellular trafficking, cell shape, and coordinated cell movement in response to various extracellular signals. The present study reveals an association between actin and p38 MAPK only in differentiated myotubes, not in proliferating myoblasts. Actin filament disassembly caused by cytochalasinD can be reversed using the potent activator of p38 MAPK, anisomycin. Pretreatment of myotubes with anisomycin partially resisted the effect of cytochalasinD. However, inhibition of p38 MAPK completely abolished the anisomycin-mediated actin remodeling. Data suggests that p38 MAPK interacts with actin and modulates actin filament rearrangement in differentiated L6E9 skeletal muscle cells.  相似文献   

8.
Vacuolization of the cytoplasm is one of the dramatic and frequently observed phenomena in various cell types. Cellular vacuoles occur spontaneously or via a wide range of inductive stimuli, but the molecular mechanism involved in this process remains largely unknown. In this study, we investigated the role of the p38 and JNK pathways in the formation of cytoplasmic vacuoles. We found that p38 and JNK agonist anisomycin abolishes spontaneous cytoplasmic vacuolization of HepG2 cells through p38 activation, but not through JNK activation. Importantly, blocking the activity of p38 or suppression the expression of p38 elicits cytoplasmic vacuoles formation in various cancer cells. Furthermore, cytoplasmic vacuoles induced by p38 blocking are derived from the perinuclear region. These observations provide direct evidence for a role of p38 signaling in regulating the formation of cytoplasmic vacuoles. J. Cell. Biochem. 114: 1789–1799, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
p38 MAPK信号转导途径在关节软骨细胞中的激活和作用   总被引:2,自引:0,他引:2  
p38信号转导途径是MAPK途径的一种,软骨细胞是关节软骨中唯一的细胞成分。软骨细胞中的p38 MAPK可以被多种细胞因子、机械因素等所激活,它与软骨细胞表型的保持和分化、软骨细胞的肥大化和钙化、凋亡、软骨基质金属蛋白酶的合成、软骨炎性细胞因子的产生等有密切关系,可能在关节炎的发生发展中发挥了重要作用。  相似文献   

10.
11.
12.
Although adult mammals are unable to significantly regenerate their heart, this is not the case for a number of other vertebrate species. In particular, zebrafish are able to fully regenerate their heart following amputation of up to 20% of the ventricle. Soon after amputation, cardiomyocytes dedifferentiate and proliferate to regenerate the missing tissue. More recently, identical results have also been obtained in neonatal mice. Ventricular amputation of neonates leads to a robust regenerative response driven by the proliferation of existing cardiomyocytes in a similar manner to zebrafish. However, this ability is progressively lost during the first week of birth. The fact that adult zebrafish retain the capacity to regenerate their heart suggests that they either possess a unique regenerative mechanism, or that adult mammals lose/ inhibit this process. p38α ΜAPK has previously been shown to negatively regulate the proliferation of adult mammalian cardiomyocytes. We sought to determine whether a similar mechanism exists in adult zebrafish, and whether this needs to be overcome to allow regeneration to proceed. To determine whether p38α ΜAPK also regulates zebrafish cardiomyocytes in a similar manner, we generated conditional transgenic zebrafish in which either dominant-negative or active p38α ΜAPK are specifically expressed in cardiomyocytes. We found that active p38α ΜAPK but not dominantnegative p38α ΜAPK blocks proliferation of adult zebrafish cardiomyocytes and, consequently, heart regeneration as well. It appears that adult zebrafish cardiomyocytes share many characteristics with adult mammalian cardiomyocytes, including p38α MAPK-mediated cell cycle inhibition. These findings raise the possibility that zebrafish-like heart regeneration could be achieved in adult mammals.  相似文献   

13.
Although adult mammals are unable to significantly regenerate their heart, this is not the case for a number of other vertebrate species. In particular, zebrafish are able to fully regenerate their heart following amputation of up to 20% of the ventricle. Soon after amputation, cardiomyocytes dedifferentiate and proliferate to regenerate the missing tissue. More recently, identical results have also been obtained in neonatal mice. Ventricular amputation of neonates leads to a robust regenerative response driven by the proliferation of existing cardiomyocytes in a similar manner to zebrafish. However, this ability is progressively lost during the first week of birth. The fact that adult zebrafish retain the capacity to regenerate their heart suggests that they either possess a unique regenerative mechanism, or that adult mammals lose/ inhibit this process. p38α ΜAPK has previously been shown to negatively regulate the proliferation of adult mammalian cardiomyocytes. We sought to determine whether a similar mechanism exists in adult zebrafish, and whether this needs to be overcome to allow regeneration to proceed. To determine whether p38α ΜAPK also regulates zebrafish cardiomyocytes in a similar manner, we generated conditional transgenic zebrafish in which either dominant-negative or active p38α ΜAPK are specifically expressed in cardiomyocytes. We found that active p38α ΜAPK but not dominantnegative p38α ΜAPK blocks proliferation of adult zebrafish cardiomyocytes and, consequently, heart regeneration as well. It appears that adult zebrafish cardiomyocytes share many characteristics with adult mammalian cardiomyocytes, including p38α MAPK-mediated cell cycle inhibition. These findings raise the possibility that zebrafish-like heart regeneration could be achieved in adult mammals.  相似文献   

14.
脂多糖(Lipopolysaccharide,LPS)是革兰阴性杆菌细胞壁的主要组成成分,也是一种很强的炎症反应和氧化应激诱导剂。呼吸道上皮是机体防御外界细菌、病毒、香烟烟雾等生物和化学因素损伤的天然屏障,在维持呼吸道局部微环境稳态中可发挥重要作用,也是吸入性药物治疗的主要靶细胞。呼吸道上皮结构完整性缺陷或功能紊乱还参与了哮喘、慢性阻塞性肺疾病等多种肺部疾病的发生和发展。LPS可引起呼吸道上皮损伤,但其具体的分子机制目前尚不清楚。p38丝裂原活化蛋白激酶(P38mitogen-activated protein kinase,p38 MAPK)作为MAPK家族四个亚家族成员之一,包含四个成员:p38α、p38β、p38γ和p38δ,可通过经典和非经典的p38 MAPK信号通路激活方式及通过激酶活性无关的功能参与调控炎症反应、细胞生长、细胞分化和细胞死亡等多种病理生理过程。本文就p38 MAPK信号通路在LPS致呼吸道上皮损伤中的作用做一综述。  相似文献   

15.
脂多糖(Lipopolysaccharide,LPS)是革兰阴性杆菌细胞壁的主要组成成分,也是一种很强的炎症反应和氧化应激诱导剂。呼吸道上皮是机体防御外界细菌、病毒、香烟烟雾等生物和化学因素损伤的天然屏障,在维持呼吸道局部微环境稳态中可发挥重要作用,也是吸入性药物治疗的主要靶细胞。呼吸道上皮结构完整性缺陷或功能紊乱还参与了哮喘、慢性阻塞性肺疾病等多种肺部疾病的发生和发展。LPS可引起呼吸道上皮损伤,但其具体的分子机制目前尚不清楚。p38丝裂原活化蛋白激酶(P38mitogen-activated protein kinase,p38 MAPK)作为MAPK家族四个亚家族成员之一,包含四个成员:p38α、p38β、p38γ和p38δ,可通过经典和非经典的p38 MAPK信号通路激活方式及通过激酶活性无关的功能参与调控炎症反应、细胞生长、细胞分化和细胞死亡等多种病理生理过程。本文就p38 MAPK信号通路在LPS致呼吸道上皮损伤中的作用做一综述。  相似文献   

16.
Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.  相似文献   

17.
目的探讨乳腺浸润性导管癌组织中血管内皮生长因子C(VEGF—C)和丝裂原激活蛋白激酶p38(p38MAPK)的表达关系,以及与乳腺浸润性导管癌淋巴结转移等生物学行为的关系。方法采用免疫组织化学sP法检测70例乳腺浸润性导管癌组织及15例癌旁正常组织中VEGF-C和p38MAPK蛋白的表达,并采用Westernblot法检测13例伴有淋巴结转移的乳腺癌及12例无淋巴结转移的乳腺癌的新鲜组织中VEGF—C和p38MAPK蛋白表达。结果VEGF—C和p38MAPK在乳腺浸润性导管癌组织中的表达(阳性率分别为67.0%和61.4%)明显高于癌旁正常组织;VEGF-C和p38MAPK蛋白在伴有淋巴结转移组的乳腺癌组织中的表达均高于无淋巴结转移组(P=0.005,P=0.005);在乳腺浸润性导管癌组织中VEGF-C和p38MAPK表达存在显著正相关(r=0.383,P=0.001),并与乳腺浸润性导管癌的TNM分期(P=0.019,P=0.010)有关;VEGF-C和p38MAPK蛋白表达与乳腺浸润性导管癌肿块的大小(P=0.203,P=0.086)和患者的年龄(P=0.0.266,P=0.087)无明显关系。Western blot也证实,VEGF-C和p38MAPK蛋白在有淋巴结转移组中表达高于无淋巴结转移组。结论VEGF-C和p38MAPK的蛋白表达与乳腺浸润性导管癌的淋巴结转移密切相关,其有望成为乳腺癌治疗的新靶点。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号