首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipogenesis is a complex cellular process, which needs a series of molecular events, including long non‐coding RNA (lncRNA). In the present study, a novel lncRNA named BADLNCR1 was identified as a regulator during bovine adipocyte differentiation, which plays an inhibitory role in lipid droplet formation and adipogenic marker gene expression. CHIPR‐seq data demonstrated a potential competitive binding motif between BADLNCR1 and sterol regulatory element‐binding proteins 1 and 2 (SREBP1/2). Dual‐luciferase reporter assay indicated target relationship between KLF2 and BADLNCR1. Moreover, after the induction of KLF2, the expression of adipogenic gene reduced, while the expression of BADLNCR1 increased. Real‐time quantitative PCR (qPCR) showed that BADLNCR1 negatively regulated mRNA expression of GLRX5 gene, a stimulator of genes that promoted formation of lipid droplets and expression of adipogenic genes. GLRX5 could partially reverse the effect of BADLNCR1 in bovine adipocyte differentiation. Dual‐luciferase reporter assay stated that BADLNCR1 significantly reduced the enhancement of C/EBPα on promoter activity of GLRX5 gene. Furthermore, CHIP‐PCR and CHIRP‐PCR confirmed the suppressing effect of BADLNCR1 on binding of C/EBPα to GLRX5 promoter. Collectively, this study revealed the molecular mechanisms underlying the negative regulation of BADLNCR1 in bovine adipogenic differentiation.  相似文献   

2.
Glutaredoxin is a small protein (12 kDa) catalyzing glutathione-dependent disulfide oxidoreduction reactions in a coupled system with NADPH, GSH, and glutathione reductase. A cDNA encoding the human glutaredoxin gene (HGMW-approved symbol GLRX) has recently been isolated and cloned from a human fetal spleen cDNA library. The screening of a human genomic library in Charon 4A led to the identification of three genomic clones. Using fluorescencein situhybridization to metaphase chromosomes with one genomic clone as a probe, the human glutaredoxin gene was localized to chromosomal region 5q14. This localization at chromosome 5 was in agreement with the somatic cell hybrid analysis, using DNA from a human–hamster and a human–mouse hybrid panel and using a human glutaredoxin cDNA as a probe.  相似文献   

3.
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe?? and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys??) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.  相似文献   

4.
对抗氧化酶系统和非酶系统同时进行研究是揭示细胞衰老和凋亡的新途径.GLRX2和TXN1是人体细胞内有关氧化还原反应的基因,分别编码抗氧化酶系统成员硫氧还蛋白和非酶系统成员谷氧还蛋白.根据GenBank已登录的GLRX2和TXN1基因序列设计适合转导的引物,以人类Hela细胞cDNA为模板进行目的基因的序列扩增,将目的基因转入大肠杆菌受体细胞,克隆出具有目的基因的重组质粒.提取带有目的基因的质粒DNA,通过测序对所克隆的目的基因进行了鉴定.本实验结果为GLRX2和TXN1基因在细胞内的表达和氧化还原反应机制的研究奠定了基础.  相似文献   

5.
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality.Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.  相似文献   

6.
The potent antiviral potential of 5'-amino-5'-deoxy-5'-noraristeromycin (2) is limited by associated toxicity. To seek derivatives of 2 that circumvent this undesirable property, three amino substituted derivatives (acetyl, 3; formyl, 4; and methyl, 5) of 2 have been prepared in 4-7 steps from the same intermediate, (1S,4R)-4-(6-chloropurin-9-yl)cyclopent-2-en-1-ol (6). Key steps involved an improved Pd(0)-catalyzed allylic azidation and a novel Pd(0)-catalyzed allylic amidation. The three target compounds were evaluated against a large number of viruses and found to be inactive except for a very weak effect of 5 on human cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. There was also no noteworthy cytotoxicity associated with the new derivatives. Thus, these results indicate variation of the cyclopentyl amine of 2 does not offer a means to improve upon its antiviral potential.  相似文献   

7.
5'-Deoxy-5'-S-allenylthioadenosine 1 and 5'-deoxy-5'-S-propnylthioadenosine 2, derived from adenosine, were prepared. 1 and 2 caused irreversible inactivation of AdoHcy hydrolase. ESI mass spectra analysis of the inactivated enzyme demonstrated that 1 and 2 were type II "mechanism-based" inhibitors.  相似文献   

8.
Analysis of hand radiographs of juvenile siblings of juvenile propositi indicates that brachymesophalangia-5 alone (without cones) is separately inherited without apparent sex bias while brachymesophalangia-5 with the cone-epiphysis of mid-5 and the cone-epiphysis of mid-5 alone are both apparently inherited as a complex and with a marked excess of females over males.  相似文献   

9.
10.
5-Azacytidine 5′-monophosphate (5-aza-CMP) was synthesized enzymatically from 5-azacytidine (5-aza-C) in a reaction catalyzed by uridine-cytidine kinase. In a second step, 5-azacytidine 5′-triphosphate (5-aza-CTP) was synthesized enzymatically from 5-aza-CMP using CMP kinase and nucleoside diphosphokinase. Due to the chemical instability of the triazide ring of 5-azacytosine at neutral and alkaline pH, the enzymatic synthesis and purification of the nucleotides by ion exchange chromatography were performed at acid pH. The enzymatically synthesized 5-aza-CTP had an ultraviolet absorbance spectrum at pH 5.5 similar to the spectrum of 5-aza-C. In the DNA-dependent RNA polymerase reaction, 5-aza-CTP inhibited the incorporation of [3H]CTP, but [3H]UTP, into RNA.  相似文献   

11.
A simple procedure for the synthesis of chiral acetic acids has been developed. The key step is an enzymatic exchange reaction which introduces 3H from 3H-labeled water into ethane 1,2-diol. The method involves no resolution of racemic intermediates and the products are of high specific radioactivity and optical purity.  相似文献   

12.
5'-Fluoro-5'-deoxyaristeromycin (2) has been prepared via a Mitsunobu coupling of (1S,2S,3R,4S)-2,3-(cyclopentylidenedioxy)-4-fluoromethylcyclopentan-1-ol with N6-bis-boc protected adenine. This procedure is adaptable to preparing a number of 5'-fluoro-5'-deoxycarbocyclic nucleoside analogs with diversity in the heterocyclic base. Antiviral analysis found promising activity for 2 toward measles but no other viruses. No cytotoxicity was observed for 2.  相似文献   

13.
L1210 cells were exposed to equitoxic concentrations of [14C]5-fluorouracil and [3H]5-fluorouridine for 4 hours. The RNA from these cells was separated into cytosolic and nuclear fractions, and then further fractionated by chromatography on poly-U Sepharose, Sephadex G-200 and DEAE-cellulose. The ratio of tritium to carbon-14 incorporated into various species of RNA differed by as much as 6-fold, indicating that the respective 5-fluorouridine-5'-monophosphates synthesized from the two precursors are localized in separate pools that do not mix rapidly.  相似文献   

14.
NISSEN O 《Biometrics》1951,7(2):167-170
  相似文献   

15.
The structures of the O-specific side-chains in the lipopolysaccharides of Salmonella greenside, group Z, and Salmonella adelaide, group O, have been investigated. The former proved to be identical with that of Escherichia coli O 55. The latter, which was more extensively studied, was composed of repeating units having the structure
in which Col is colitose (3,6-dideoxy-l-xylo-hexose). This was also shown to be the biological repeating-unit. The same structure has been proposed for the O-antigen of E. coli O 111. The biological repeating-unit for the S. greenside O-antigen was also defined. The structural studies also confirmed that both lipopolysaccharides contain the hexose region typical for the Salmonella core.  相似文献   

16.
The interaction of 5'-deoxy-5'-thioadenosine 5'-monophosphate (A(S)MP) and 5'-deoxy-5'-thioinosine 5'-monophosphate (I(S)MP) with snake venom, 5'nucleotidase, and calf intestinal mucosa alkaline phosphatase has been characterized. The substrates, A(S)MP and I(S)MP, are analogs of adenosine 5'-monophosphate and inosine 5'-monophosphate in which sulfur replaces oxygen as the bridge between the 5'-carbon of the ribose and the phosphorous. The P-S bond of both A(S)MP and I(S)MP was hydrolyzed by alkaline phosphatase producing the corresponding thionucleoside as a reaction product. The Km for A(S)MP was 270 microM and the V for alkaline phosphatase was 110 nmol/min/mg (8% of the V for AMP), whereas the corresponding values for I(S)MP were 300 microM and 530 nmol/min/mg protein, respectively. In contrast, 5'-nucleotidase did not catalyze hydrolysis of either A(S)MP or I(S)MP. A(S)MP and I(S)MP were competitive inhibitors of the 5'-nucleotidase hydrolysis of AMP and IMP, respectively, with Ki values of 975 and 13 microM. Decreasing the pH of the reaction from 8.1 to 7.1 lowered the Ki for I(S)MP by 100-fold, to a value of 0.15 microM.  相似文献   

17.
Acid-soluble extracts of dormant embryos of the brine shrimp, Artemia salina, contain small amounts of two previously undescribed dinucleotides which we have identified to be guanosine 5'-diphospho-5'-guanosine and guanosine 5'-triphospho-5'-adenosine. These compounds each comprise about 0.03% of the dry weight of the encysted embryos and are related chemically to guanosine 5'-triphospho-5'-guanosine and guanosine 5'-tetraphospho-5'-guanosine which have been shown previously to be major constituents of the nucleotide pool of Artemia cysts. These new dinucleotides were purified from perchloric acid extracts of dormant cysts by ion exchange column chromatography and identified by means of chemical, spectrophotometric, and enzymatic analyses compared to commercially available compounds. The possible role of these new compounds in nucleotide and nucleic acid metabolism in Artemia embryos is discussed.  相似文献   

18.
A series of 5-fluorocytosine derivatives, 5'-deoxy-N-alkyloxycarbonyl-5-fluorocytosine-5'-carboxylic acid 6, were synthesized and evaluated for their antitumor activity.  相似文献   

19.
R Spencer  J Fisher  C Walsh 《Biochemistry》1976,15(5):1043-1053
In order to facilitate interpretation of the deazaisoalloxazine system as a valid mechanistic probe of flavoenzyme catalysis, we have examined some of the fundamental chemical properties of this system. The enzymatic synthesis, on a micromole scale, of the flavin coenzyme analogues 5-deazariboflavin 5'-phosphate (deazaFMN) and 5-deazariboflavin 5'-diphosphate, 5' leads to 5'adenosine ester (deazaFAD) has been achieved. This latter synthesis is accomplished with a partially purified FAD synthetase complex (from Brevibacterium ammoniagenes), containing both phosphorylating and adenylylating activities, allowing direct conversion of the riboflavin analogue to the flavin adenine dinucleotide level. The structure of the reduced deazaflavin resulting from enzymatic and chemical reduction is established as the 1,5-dihydrodeazaflavin by proton magnetic resonance. Similarly, the C-5 position of the deazaflavins is demonstrated to be the locus for hydrogen transfer in deazaflavin redox reactions. Preparation of 1,5-dihydrodeazaflavins by sodium borohydride reduction stabilized them to autoxidation (t 1/2 approximately 40 h, 22 degrees C) although dihydrodeazaflavins are rapidly oxidized by other electron acceptors, including riboflavin, phenazine methosulfate, methylene blue, and dichlorophenolindophenol. Mixtures of oxidized and reduced deazaflavins undergo a rapid two-electron disproportionation (k = 22 M-1 S-1 0 degrees C), and oxidized deazaflavins form transient covalent adducts with nitroalkane anions at pH less than 5. Generalized methods for the synthesis of isotopically labeled flavin and deazaflavin coenzymes and their purification by adsorptive chromatography are given.  相似文献   

20.
J Fisher  R Spencer  C Walsh 《Biochemistry》1976,15(5):1054-1064
The ability of 5-deazaisoalloxazines to substitute for the isoalloxazine (flavin) coenzyme has been examined with several flavoenzymes. Without exception, the deazaflavin is recognized at the active site and undergoes a redox change in the presence of the specific enzyme substrate. Thus, deazariboflavin is reduced catalytically by NADH in the presence of the Beneckea harveyi NAD(P)H:(flavin) oxidoreductase, the reaction proceeding to an equilibrium with an equilibrium constant near unity. This implies an E0 of -0.310 V for the deazariboflavindihydrodeazariboflavin couple, much lower than that for isoalloxazines. With this enzyme, both riboflavin and deazariboflavin show the same stereospecificity with respect to the pyridine nucleotide, and despite a large difference in Vmax for the two, both have the same rate-determining step (hydrogen transfer). Direct transfer of the hydrogen is seen between the nicotinamide and deazariboflavin in both reaction directions. DeazaFMN reconstituted yeast NADPH: (acceptor) oxidoreductase (Old Yellow Enzyme), and deazaFAD reconstituted D-amino acid:O2 oxidoreductase and Aspergillus niger D-glucose O2 oxidoreductase are all reduced by substrate at approximately 10(-5) the rate of holoenzyme; none are reoxidized by oxygen or any of the tested artificial electron acceptors, though deazaFADH-bound to D-amino acid:O2 oxidoreductase is rapidly oxidized by the imino acid product. Direct hydrogen transfer from substrate to deazaflavin has been demonstrated for both deazaFAD-reconstituted oxidases. These data implicate deazaflavins as a unique probe of flavin catalysis, in that any mechanism for the flavin catalysis must account for the deazaflavin reactivity as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号