首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid β (Aβ)‐induced chronic inflammation is believed to be a key pathogenic process in early‐stage age‐related macular degeneration (AMD). Nucleotide oligomerization domain (NOD)‐like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation triggered by Aβ is responsible for retinal pigment epithelium (RPE) dysfunction in the onset of AMD; however, the detailed molecular mechanism remains unclear. In this study, we investigated the involvement of NADPH oxidase‐ and mitochondria‐derived reactive oxygen species (ROS) in the process of Aβ1–40‐induced NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. The results showed that Aβ1–40 could induce excessive ROS generation, MAPK/NF‐κB signaling activation and subsequently NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. Furthermore, the inductive effect of Aβ1–40 on NLRP3 inflammasome activation was mediated in a manner dependent on NADPH oxidase‐ and mitochondria‐derived ROS. Our findings may provide a novel insight into the molecular mechanism by which Aβ contributes to the early‐stage AMD.  相似文献   

2.
Naoxintong (NXT) is a Chinese Materia Medica standardized product extracted from 16 various kinds of Chinese traditional herbal medicines including Salvia miltiorrhiza, Angelica sinensis, Astragali Radix. Naoxintong is clinically effective in treating ischaemia heart disease. Nucleotide‐binding oligomerization domain‐Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome has been critically involved in myocardial ischaemia/reperfusion (I/R) injury. Here, we have been suggested that NXT might attenuate myocardial I/R injury via suppression of NLRP3 inflammasome activation. Male C57BL6 mice were subjected to myocardial I/R injury via 45 min. coronary ligation and release for the indicated times. Naoxintong (0.7 g/kg/day) and PBS were orally administrated for 2 weeks before surgery. Cardiac function assessed by echocardiography was significantly improved in the NXT group compared to PBS group at day 2 after myocardial I/R. NLRP3 inflammasome activation is crucially involved in the initial inflammatory response after myocardial I/R injury, leading to cleaved caspase‐1, mature interleukin (IL)‐1β production, accompanying by macrophage and neutrophil infiltration. The cardioprotective effect of NXT was associated with a diminished NLRP3 inflammasome activation, decreased pro‐inflammatory macrophage (M1 macrophages) and neutrophil infiltration after myocardial I/R injury. In addition, serum levels of IL‐1β, indicators of NLRP3 inflammasome activation, were also significantly suppressed in the NXT treated group after I/R injury. Naoxintong exerts cardioprotive effects at least partly by suppression of NLRP3 inflammasome activation in this I/R injury model.  相似文献   

3.
Mounting evidence supports the hypothesis that inflammation modulates sympathetic sprouting after myocardial infarction (MI). The myeloid P2X7 signal has been shown to activate the nucleotide‐binding and oligomerization domain‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome, a master regulator of inflammation. We investigated whether P2X7 signal participated in the pathogenesis of sympathetic reinnervation after MI, and whether NLRP3/interleukin‐1β (IL‐1β) axis is involved in the process. We explored the relationship between P2X7 receptor (P2X7R) and IL‐1β in the heart tissue of lipopolysaccharide (LPS)‐primed naive rats. 3′‐O‐(4‐benzoyl) benzoyl adenosine 5′‐triphosphate (BzATP), a P2X7R agonist, induced caspase‐1 activation and mature IL‐1β release, which was further neutralized by a NLRP3 inhibitor (16673‐34‐0). MI was induced by coronary artery ligation. Following infarction, a marked increase in P2X7R was localized within infiltrated macrophages and observed in parallel with an up‐regulation of NLRP3 inflammasome levels and the release of IL‐1β in the left ventricle. The administration of A‐740003 (a P2X7R antagonist) significantly prevented the NLRP3/IL‐1β increase. A‐740003 and/or Anakinra (an IL‐1 receptor antagonist) significantly reduced macrophage infiltration as well as macrophage‐based IL‐1β and NGF (nerve growth factor) production and eventually blunted sympathetic hyperinnervation, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth‐associated protein 43 (GAP 43). Moreover, the use of Anakinra partly attenuated sympathetic sprouting. This indicated that the effect of P2X7 on neural remodelling was mediated at least partially by IL‐1β. The arrhythmia score of programmed electric stimulation was in accordance with the degree of sympathetic hyperinnervation. In vitro studies showed that BzATP up‐regulated secretion of nerve growth factor (NGF) in M1 macrophages via IL‐1β. Together, these data indicate that P2X7R contributes to neural and cardiac remodelling, at least partly mediated by NLRP3/IL‐1β axis. Therapeutic interventions targeting P2X7 signal may be a novel approach to ameliorate arrhythmia following MI.  相似文献   

4.
NLRP3 inflammasome activation plays an important role in diabetic cardiomyopathy (DCM), which may relate to excessive production of reactive oxygen species (ROS). Gypenosides (Gps), the major ingredients of Gynostemma pentaphylla (Thunb.) Makino, have exerted the properties of anti‐hyperglycaemia and anti‐inflammation, but whether Gps improve myocardial damage and the mechanism remains unclear. Here, we found that high glucose (HG) induced myocardial damage by activating the NLRP3 inflammasome and then promoting IL‐1β and IL‐18 secretion in H9C2 cells and NRVMs. Meanwhile, HG elevated the production of ROS, which was vital to NLRP3 inflammasome activation. Moreover, the ROS activated the NLRP3 inflammasome mainly by cytochrome c influx into the cytoplasm and binding to NLRP3. Inhibition of ROS and cytochrome c dramatically down‐regulated NLRP3 inflammasome activation and improved the cardiomyocyte damage induced by HG, which was also detected in cells treated by Gps. Furthermore, Gps also reduced the levels of the C‐reactive proteins (CRPs), IL‐1β and IL‐18, inhibited NLRP3 inflammasome activation and consequently improved myocardial damage in vivo. These findings provide a mechanism that ROS induced by HG activates the NLRP3 inflammasome by cytochrome c binding to NLRP3 and that Gps may be potential and effective drugs for DCM via the inhibition of ROS‐mediated NLRP3 inflammasome activation.  相似文献   

5.
《Journal of lipid research》2017,58(6):1080-1090
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·− production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis  相似文献   

6.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

7.
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

8.
Cannabidiol (CBD), an abundant nonpsychoactive constituent of marijuana, has been reported previously to protect against hepatic steatosis. In this study, we studied further the functions and mechanisms of CBD on liver inflammation induced by HFC diet. Mice feeding an HFC diet for 8 weeks were applied to test the protective effect of CBD on livers. RAW264.7 cells were incubated with LPS + ATP ± CBD to study the mechanisms of the effect of CBD against inflammasome activation. We found that CBD alleviated liver inflammation induced by HFC diet. CBD significantly inhibited the nuclear factor-κappa B (NF-κB) p65 nuclear translocation and the activation of nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome both in vivo and in vitro studies, which lead to the reduction of the expression of inflammation-related factors in our studies. In addition, Inhibitor of activation of NF-κB partly suppressed the NLRP3 inflammasome activation, while adding CBD further inhibited NF-κB activation and correspondingly suppressed the NLRP3 inflammasome activation in macrophages. In conclusion, the suppression of the activation of NLRP3 inflammasome through deactivation of NF-κB in macrophages by CBD might be one mechanism of its anti-inflammatory function in the liver.  相似文献   

9.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

10.
Retinal hypoxia is a major condition of the chronic inflammatory disease age-related macular degeneration. Extracellular ATP is a danger signal which is known to activate the NLRP3 inflammasome in various cell systems. We investigated in cultured human retinal pigment epithelial (RPE) cells whether hypoxia alters the expression of inflammasome-associated genes and whether purinergic receptor signaling contributes to the hypoxic expression of key inflammatory (NLRP3) and angiogenic factor (VEGF) genes. Hypoxia and chemical hypoxia were induced by a 0.2%-O2 atmosphere and addition of CoCl2, respectively. Gene expression was determined with real-time RT-PCR. Cytosolic NLRP3 and (pro-) IL-1β levels, and the extracellular VEGF level, were evaluated with Western blot and ELISA analyses. Cell culture in 0.2% O2 induced expression of NLRP3 and pro-IL-1β genes but not of the pro-IL-18 gene. Hypoxia also increased the cytosolic levels of NLRP3 and (pro-) IL-1β proteins. Inflammasome activation by lysosomal destabilization decreased the cell viability under hypoxic, but not control conditions. In addition to activation of IL-1 receptors, purinergic receptor signaling mediated by a pannexin-dependent release of ATP and a release of adenosine, and activation of P2Y2 and adenosine A1 receptors, was required for the full hypoxic expression of the NLRP3 gene. P2Y2 (but not A1) receptor signaling also contributed to the hypoxic expression and secretion of VEGF. The data indicate that hypoxia induces priming and activation of the NLRP3 inflammasome in cultured RPE cells. The hypoxic NLRP3 and VEGF gene expression and the secretion of VEGF are in part mediated by P2Y2 receptor signaling.  相似文献   

11.
In acute inflammation, extracellular ATP activates P2X7 ion channel receptors (P2X7R) on M1 polarized macrophages to release pro-inflammatory IL-1β through activation of the caspase-1/nucleotide-binding domain and leucine-rich repeat receptor containing pyrin domain 3 (NLRP3) inflammasome. In contrast, M2 polarized macrophages are critical to the resolution of inflammation but neither actions of P2X7R on these macrophages nor mechanisms by which macrophages switch from pro-inflammatory to anti-inflammatory phenotypes are known. Here, we investigated extracellular ATP signalling over a dynamic macrophage polarity gradient from M1 through M2 phenotypes. In macrophages polarized towards, but not at, M2 phenotype, in which intracellular IL-1β remains high and the inflammasome is intact, P2X7R activation selectively uncouples to the NLRP3-inflammasome activation but not to upstream ion channel activation. In these intermediate M1/M2 polarized macrophages, extracellular ATP now acts through its pyrophosphate chains, independently of other purine receptors, to inhibit IL-1β release by other stimuli through two independent mechanisms: inhibition of ROS production and trapping of the inflammasome complex through intracellular clustering of actin filaments.  相似文献   

12.
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.  相似文献   

13.
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes.  相似文献   

14.
The nucleotide‐binding oligomerization domain‐like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has a key role in the inflammatory response. We found that cisplatin (7.5, 15 mg/kg, IV) could induce acute injury to the liver and kidneys of rats. Western blot and immunohistochemical analyses showed that expression of NLRP3, caspase‐1 and interleukin‐1β was upregulated significantly in a dose‐dependent manner after cisplatin exposure. Autophagy could inhibit NLRP3 expression and assembly of the NLRP3 inflammasome. Expression of light chain 3 II/I and p62 suggested that autophagy was inhibited during injury to the liver and kidneys. These data suggested that cisplatin might activate NLRP3 by inhibiting autophagy in the liver and kidneys of rats.  相似文献   

15.
The NLRP3 inflammasome is a critical component of the innate immune system. NLRP3 activation is induced by diverse stimuli associated with bacterial infection or tissue damage, but its inappropriate activation is involved in the pathogenesis of inherited and acquired inflammatory diseases. However, the mechanism by which NLRP3 is activated remains poorly understood. In this study, we explored the role of kinases in NLRP3 inflammasome activation by screening a kinase inhibitor library and identified 3,4-methylenedioxy-β-nitrostyrene (MNS) as an inhibitor for NLRP3 inflammasome activation. Notably, MNS did not affect the activation of the NLRC4 or AIM2 (absent in melanoma 2) inflammasome. Mechanistically, MNS specifically prevented NLRP3-mediated ASC speck formation and oligomerization without blocking potassium efflux induced by NLRP3 agonists. Surprisingly, Syk kinase, the reported target of MNS, did not mediate the inhibitory activity of MNS on NLRP3 inflammasome activation. We also found that the nitrovinyl group of MNS is essential for the inhibitory activity of MNS. Immunoprecipitation, mass spectrometry, and mutation studies suggest that both the nucleotide binding oligomerization domain and the leucine-rich repeat domain of NLRP3 were the intracellular targets of MNS. Administration of MNS also inhibited NLRP3 ATPase activity in vitro, suggesting that MNS blocks the NLRP3 inflammasome by directly targeting NLRP3 or NLRP3-associated complexes. These studies identified a novel chemical probe for studying the molecular mechanism of NLRP3 inflammasome activation which may advance the development of novel strategies to treat diseases associated with abnormal activation of NLRP3 inflammasome.  相似文献   

16.
Uric acid crystal is known to activate the NLRP3 inflammasome and to cause tissue damages, which can result in many diseases, such as gout, chronic renal injury and myocardial damage. Meanwhile, soluble uric acid (sUA), before forming crystals, is also related to these diseases. This study was carried out to investigate whether sUA could also activate NLRP3 inflammasome in cardiomyocytes and to analyse the mechanisms. The cardiomyocyte activity was monitored, along with the levels of mature IL‐1β and caspase‐1 from H9c2 cells following sUA stimulus. We found that sUA was able to activate NLRP3 inflammasome, which was responsible for H9c2 cell apoptosis induced by sUA. By elevating TLR6 levels and then activating NF‐κB/p65 signal pathway, sUA promoted NLRP3, pro‐caspase 1 and pro‐IL‐1β production and provided the first signal of NLRP3 inflammasome activation. Meanwhile, ROS production regulated by UCP2 levels also contributed to NLRP3 inflammasome assembly and subsequent caspase 1 activation and mature IL‐1β secretion. In addition, the tlr6 knockdown rats suffering from hyperuricemia showed the lower level of IL‐1β and an ameliorative cardiac function. These findings suggest that sUA activates NLRP3 inflammasome in cardiomyocytes and they may provide one therapeutic strategy for myocardial damage induced by sUA.  相似文献   

17.
Inflammation within the CNS is a major component of many neurodegenerative diseases. A characteristic feature is the generation of microglia‐derived factors that play an essential role in the immune response. IL‐1β is a pro‐inflammatory cytokine released by activated microglia, able to exacerbate injury at elevated levels. In the presence of caspase‐1, pro‐IL‐1β is cleaved to the mature cytokine following NOD‐like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. Growing evidence suggests that ceramide plays a critical role in NLRP3 inflammasome assembly, however, the relationship between ceramide and inflammasome activation in microglia remains unknown. Here, we investigated potential mechanistic links between ceramide as a modulator of NLRP3 inflammasome assembly and the resulting secretion of IL‐1β using small bioactive enzyme stimulators and inhibitors of ceramide signaling in wild‐type and apoptosis‐associated speck‐like protein containing a CARD knockout (ASC?/?) primary microglia. To induce the expression of inflammasome components, microglia were primed prior to experiments. Treatment with sodium palmitate (PA) induced de novo ceramide synthesis via modulation of its synthesizing protein serine palmitoyl transferase resulting in increased IL‐1β secretion in microglia. Exposure of microglia to the serine palmitoyl transferase‐inhibitor l ‐cycloserine significantly prevented PA‐induced IL‐1β secretion. Application of the ceramide analogue C2 and the sphingosine‐1‐phosphate‐receptor agonist Fingolimod (FTY720) up‐regulated levels of IL‐1β and cleaved caspase‐1 in wild‐type microglia, whereas ASC?/? microglia were unaffected. HPA‐12 inhibition of ceramide transport did not affect inflammasome activation. Taken together, our findings reveal a critical role for ceramide as a positive modulator of NLRP3 inflammasome assembly and the resulting release of IL‐1β.

  相似文献   

18.
Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic downregulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3−/− littermates were fed control diet or high-fat, high-fructose diet (HD). A subgroup of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg intraperitoneally [IP]). HD feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in profibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3−/− mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin (IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited nuclear factor (NF)-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing.  相似文献   

19.
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.  相似文献   

20.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号