首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
5.
We report here that octanoate, a medium chain fatty acid, induces adipocyte differentiation in 3T3-L1 cells by co-treatment with dexamethasone, although octanoate has been known not to stimulate 3T3-L1 adipogenesis. A low concentration of exogenous glucose prevented 3T3-L1 adipogenesis induced by 1-methyl 3-isobutylxanthine, dexamethasone, and insulin (MDI) treatment (a common protocol for adipocyte differentiation). In contrast, co-treatment with dexamethasone and octanoate (D-OCT) induced adipogenesis under the same conditions. These findings imply that octanoate, rather than glucose, is the source of accumulated lipids in D-OCT-induced adipogenesis. D-OCT increased expression of the differentiation markers peroxisome proliferator-activated receptor (PPAR)gamma2 and caveolin-1. A specific inhibitor of p38 mitogen-activated protein (MAP) kinase inhibited D-OCT-induced adipogenesis. These results suggest that the p38 MAP kinase pathway followed by up-regulation of PPARgamma2 may be involved in 3T3-L1 adipocyte differentiation induced by D-OCT, as well as by MDI.  相似文献   

6.
7.
BackgroundObesity and type 2 diabetes mellitus, which are widespread throughout the world, require therapeutic interventions targeted to solve clinical problems (insulin resistance, hyperglycaemia, dyslipidaemia and steatosis). Several natural compounds are now part of the therapeutic repertoire developed to better manage these pathological conditions. Cladosporols, secondary metabolites from the fungus Cladosporium tenuissimum, have been characterised for their ability to control cell proliferation in human colon cancer cell lines through peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Here, we report data concerning the ability of cladosporols to regulate the differentiation of murine 3T3-L1 preadipocytes.MethodsCell counting and MTT assay were used for analysing cell proliferation. RT-PCR and Western blotting assays were performed to evaluate differentiation marker expression. Cell migration was analysed by wound-healing assay.ResultsWe showed that cladosporol A and B inhibited the storage of lipids in 3T3-L1 mature adipocytes, while their administration did not affect the proliferative ability of preadipocytes. Moreover, both cladosporols downregulated mRNA and protein levels of early (C/EBPα and PPARγ) and late (aP2, LPL, FASN, GLUT-4, adiponectin and leptin) differentiation markers of adipogenesis. Finally, we found that proliferation and migration of HT-29 colorectal cancer cells were inhibited by conditioned medium from cladosporol-treated 3T3-L1 cells compared with the preadipocyte conditioned medium.ConclusionsTo our knowledge, this is the first report describing that cladosporols inhibit in vitro adipogenesis and through this inhibition may interfere with HT-29 cancer cell growth and migration.General significanceCladosporols are promising tools to inhibit concomitantly adipogenesis and control colon cancer initiation and progression.  相似文献   

8.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

9.
10.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

11.
12.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

13.
Pharmacological agonists for the nuclear receptor PPAR gamma enhance glucose disposal in a variety of insulin-resistant states in humans and animals. The precise mechanisms whereby activation of PPAR gamma leads to increased glucose uptake in metabolically active cells remain to be determined. Notably, certain novel, synthetic PPAR gamma ligands appear to antagonize thiazolidinedione-induced adipogenesis yet stimulate cellular glucose uptake. We have explored the molecular mechanisms underlying the enhancement of glucose uptake produced by PPAR gamma agonists in 3T3-L1 adipocytes. Rosiglitazone treatment for 48 h significantly increased basal and insulin-stimulated glucose uptake and markedly increased the cellular expression of GLUT1 but not GLUT4. Rosiglitazone increased plasma membrane levels of GLUT1, but not GLUT4, both basally and after insulin stimulation. Surprisingly, adenoviral expression of a dominant-negative mutant PPAR gamma, which was demonstrated to strongly inhibit adipogenesis, completely failed to inhibit rosiglitazone-stimulated glucose uptake. Similar findings were obtained with the non-thiazolidinedione PPAR gamma agonists, GW1929 and GW7845. The insensitivity of PPAR gamma agonist-stimulated glucose uptake to expression of a dominant-negative mutant, compared with the latter's marked inhibitory effects on preadipocyte differentiation, suggests that, as is the case for other nuclear receptors, the precise molecular mechanisms linking PPAR gamma activation to downstream events may differ depending on the nature of the biological response. The growing evidence that the effects of PPAR gamma on adipogenesis and glucose uptake can be dissociated may have important implications for the development of improved antidiabetic drug treatments.  相似文献   

14.
为了探究脂肪酸对罗非鱼(Oreochromis niloticus)脂肪细胞增殖和分化的影响, 在体外培养罗非鱼前脂肪细胞, 并在其增殖和分化过程中分别添加100 μmol/L的棕榈酸(Palmitic Acid, PA)、油酸(Oleic Acid, OA), 亚油酸(Linoleic Acid, LA)和α-亚麻酸(α-Linolenic Acid, LNA)进行处理。使用SRB (Sulforhodamine B)染色法和油红O染色法检测外源性脂肪酸对脂肪细胞增殖和分化的影响, Real-time qPCR检测增殖分化过程中基因表达情况。结果显示, 在培养8d时, 外源添加的不饱和脂肪酸可以促进罗非鱼前脂肪细胞增殖, 并且增殖过程中增殖相关基因(c-fos和c-myc)、脂解相关基因(ATGL)和脂合成相关基因(PPARγ和CD36)的表达与对照组相比均显著提高(P<0.05)。此外, 外源脂肪酸的加入可以抑制脂肪细胞的分化。棕榈酸的加入使得脂肪细胞中产生的脂滴面积较少, 数量较多; 分化过程中细胞的β氧化相关基因(CPT-1a)与对照组相比显著上调, 而脂解相关基因(ATGL)则显著下调。外源性不饱和脂肪酸可以促进罗非鱼前脂肪增殖, 而饱和脂肪酸主要抑制细胞分化。在增殖过程中, 过量的脂肪酸先通过脂合成储存在胞内, 再借助脂解等途径进行代谢, 从而帮助细胞适应环境中高浓度的脂肪酸。而在分化过程中, 添加外源脂肪酸, 可能通过抑制脂肪细胞内的脂合成和脂解的发生, 同时促进β氧化等方式来抑制脂肪细胞分化。  相似文献   

15.
16.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

17.
18.
Lead (Pb) is an environmental and industrial contaminant that still represents a public health problem. Elevated Pb exposure has been inversely correlated with femoral bone density and associated with osteoporosis. In the last years, it has been shown that inhibition of osteogenesis from mesenchymal stem cells activates adipogenesis and vice versa. In this paper, we investigated the effect of Pb on the differentiation of 3T3-L1 fibroblasts to adipocytes which is the cell model most used to study adipogenesis. After induction of differentiation, 2 days post-confluent cells re-enter the cell cycle and undergo mitotic clonal expansion (MCE) followed by expression of genes that produce the adipocyte phenotype. The presence of concentrations of Pb up to 10 μM during differentiation of 3T3-L1 fibroblasts did not interfere with MCE but enhanced the accumulation of cytosolic lipids that occur during adipogenesis, as well as, the induction of PPARγ, the master gene in adipogenesis. It is known that PPARγ upregulation is subsequent to induction of C/EBPβ and ERK activation, which are early events in adipogenesis. We found that both events were enhanced by Pb treatment. Our results support a stimulatory effect of Pb on adipogenesis which involves ERK activation and C/EBPβ upregulation prior to PPARγ and adipogenesis activation.  相似文献   

19.
Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor γ (PPARγ) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPARγ ligand activity.  相似文献   

20.
The purpose of this study is to investigate the effects of euphorbiasteroid, a component of Euphorbia lathyris L., on adipogenesis of 3T3‐L1 pre‐adipocytes and its underlying mechanisms. Euphorbiasteroid decreased differentiation of 3T3‐L1 cells via reduction of intracellular triglyceride (TG) accumulation at concentrations of 25 and 50 μM. In addition, euphorbiasteroid altered the key regulator proteins of adipogenesis in the early stage of adipocyte differentiation by increasing the phosphorylation of AMP‐activated protein kinase (AMPK) and acetyl‐CoA carboxylase. Subsequently, levels of adipogenic proteins, including fatty acid synthase, peroxisome proliferator‐activated receptor‐γ and CCAAT/enhancer‐binding protein α, were decreased by euphorbiasteroid treatment at the late stage of adipocyte differentiation. The anti‐adipogenic effect of euphorbiasteroid may be derived from inhibition of early stage of adipocyte differentiation. Taken together, euphorbiasteroid inhibits adipogenesis of 3T3‐L1 cells through activation of the AMPK pathway. Therefore, euphorbiasteroid and its source plant, E. lathyris L., could possibly be one of the fascinating anti‐obesity agent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号