首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An easy method for primary culture of chicken hepatocytes was developed to study the influence of dioxin on birds. Chicken hepatocytes could maintain gene expression and protein secretion of albumin for a long period in serum-free medium with free atmosphere exchange at 37°C. Moreover, the cells showed a sensitive response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by monitoring the expression of P450 1A, theta GST (θ-GST) and albumin genes.  相似文献   

2.
Human NADPH : cytochrome P450 oxidoreductase (POR) is encoded by a single gene on chromosome 7q11.2. This flavoprotein donates electrons derived from NADPH to a variety of acceptor proteins, including squalene monooxygenase, heme oxygenase, cytochrome b5, and many microsomal cytochromes P450 (CYPs), which are involved in oxidative drug metabolism, steroidogenesis, and other functions. Numerous aspects related to cellular POR expression have not been systematically investigated. Interestingly, POR expression is lower compared to CYPs and may thus be limiting for monooxygenase activities, but conversely, POR knock‐out in mice resulted in compensatory upregulation of CYPs. POR may also influence intracellular cholesterol and lipid homeostasis. To systematically investigate such effects, we developed specific POR gene silencing in cell lines and primary human hepatocytes by RNA interference using small interfering RNAs (siRNAs). In HepG2 cells, POR mRNA could be reduced by 95% over 4 days accompanied by reduced protein content and activity. In primary human hepatocytes, POR mRNA knock‐down was less effective and more variable. Analysis of CYPs indicated induction of CYP3A4 but not CYP1A2 or CYP2D6. These results demonstrate that POR can be efficiently and almost completely silenced in HepG2 cells and, at least partially, in primary human hepatocytes. This will allow systematic studies of various consequences of POR variability in human cells.  相似文献   

3.
4.
5.
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.  相似文献   

6.
7.
利用多聚酶链反应技术,从人膀胱癌细胞系5637细胞中快速扩增并克隆了人粒细胞集落刺激因子cDNA,序列分析证明,该cDNA包含人粒细胞集落刺激因子的全部编码基因,全长612bp,编码30个氨基酸的信号肽和174个氨基酸的成熟蛋白。其中第43位codon出现一个碱基的突变(CAC→TAC)导至第43位氨基酸的改变(组氨酸→酪氨酸)。经逆转录病毒导入SP2/0细胞并初步表达。结果表明:该基因产物具有G-CSF活性。  相似文献   

8.
9.
10.
11.
Recently, we have improved the cryopreservation procedures for human hepatocytes, leading to cells that can be cultured after thawing (“plateable” cryopreserved human hepatocytes). The ability to culture cryopreserved human hepatocytes allows application of the cells for prolonged incubations such as long-term (days) metabolism studies, enzyme induction studies, and cytotoxicity studies. We report here the application of the plateable cryopreserved human hepatocytes to evaluate the relationship between xenobiotic metabolism and toxicity. Two assays were developed: The Metabolism Comparative Cytotoxicity Assay (MCCA) and the Cytotoxic Metabolic Pathway Identification Assay (CMPIA). The MCCA was designed for the initial identification of the role of metabolism in cytotoxicity by comparing the cytotoxic potential of a toxicant in a metabolically competent (primary human hepatocytes) and a metabolically incompetent (Chinese hamster ovary (CHO)) cell type, as well as the evaluation of the role of P450 metabolism by comparing the cytotoxicity of the toxicant in question in human hepatocytes in the presence and absence of a nonspecific, irreversible P450 inhibitor, 1-aminobenzotriazole (ABT). The CMPIA was designed for the identification of the P450 isoforms involved in metabolic activation via the evaluation of the cytotoxicity of the toxicant in the presence and absence of isoform-selective P450 inhibitors. Results of a proof-of-concept study with the MCCA and CMPIA with a known hepatotoxicant, aflatoxin B1 (AFB1), are reported. AFB1 is known to require P450 metabolism for its toxicity. In the MCCA, AFB1 was found to have significantly higher cytotoxicity in human hepatocytes than CHO cells, therefore confirming its requirement for biotransformation to be toxic. ABT was found to effectively attenuate AFB1 cytotoxicity, confirming that P450 metabolism was involved in its metabolic activation. In the CMPIA, AFB1 cytotoxicity was found to be attenuated by ketoconazole and diethyldithiocarbamate, but not by furafylline, quinidine, and sulfaphenazole. Results with the isoform-selective inhibitors suggest that the isoforms inhibited by ketoconazole (mainly CYP3A4) and diethyldithiocarbamate (mainly CYP2A6, and CYP2E1), but not the isoforms inhibited by furafylline (mainly CYP1A2), sulfaphenazole (mainly CYP2C9) and quinidine (mainly CYP2D6) are involved in the metabolic activation of AFB1. This proof-of-concept study suggests that MCCA and CMPIA with cryopreserved human hepatocytes are potentially useful for the evaluation of the relationship between human xenobiotic metabolism and toxicity.  相似文献   

12.
The gene vermilion encodes tryptophan 2,3‐dioxygenase, part of the ommochrome pathway, and is responsible for the dark pigmented eyes in some insects, including beetles. Using RNA interference, we targeted the vermilion gene ortholog in embryos and pupae of the yellow mealworm, Tenebrio molitor, resulting in larvae and adults, respectively, that lacked eye pigment. RNA‐Seq was used to analyze the impact of vermilion‐specific RNA interference on gene expression. There was a 425‐fold reduction in vermilion gene expression (p = 0.0003), as well as significant (p < 0.05) differential expression of 109 other putative genes, most of which were downregulated. Enrichment analysis of Gene Ontology terms found in the differentially expressed data set included genes known to be involved in the ommochrome pathway. However, enrichment analysis also revealed the influence of vermilion expression on genes involved in protein translocation to the endoplasmic reticulum, signal transduction, G‐protein‐coupled receptor signaling, cell‐cycle arrest, mannose biosynthesis, and vitamin transport. These data demonstrate that knockdown of vermilion in T. molitor results in complete loss of eye color (white‐eyed phenotype) and identify other interrelated genes in the vermilion metabolic pathway. Therefore, a dominant marker system based on eye color can be developed for the genetic manipulation of T. molitor to increase the value of mealworms as an alternative food source by decreasing negative traits, such as disease susceptibility, and increasing desired traits, such as protein content and vitamin production.  相似文献   

13.
4-Nonylphenol (4-NP), a major by-product of alkylphenol ethoxylates, is used in several industries and as a consequence is quite common in rivers, estuaries and other aquatic environments that receive sewage discharges or are near offshore oil platforms. 4-NP is an environmental estrogen that also binds human and rodent Pregnane X-receptor (PXR), the orphan nuclear receptor that controls the expression of several detoxication genes in mammals, including several CYP3A and CYP2B family members. These P450s preferentially hydroxylate testosterone in the 6beta- and 16beta-positions, respectively. In this study, the effects of 4-NP on testosterone metabolism and hepatic CYP3A induction were compared to the effects of St. John's Wort (SJW), a well established mammalian PXR agonist, in winter flounder. Male winter flounder (Pleuronectes americanus) were injected with 100 mg/kg/day 4-NP or 500 mg/kg/day SJW or both (S and N) every 24 h. Forty-eight hours after the initial injections, flounder were euthanized. Western blots and testosterone 6beta-hydroxylation indicated that CYP3A was increased 50% by 4-NP, but was not affected by SJW. Testosterone 16beta-hydroxylase activity was also significantly increased in flounder treated with 4-NP (2.8 x), but not with SJW. This is not consistent with our hypothesis that both SJW and 4-NP would induce CYP3A. Subtractive hybridization was performed between control and 4-NP treated hepatic mRNA samples to isolate differentially expressed genes. Subtractive hybridization indicated that several acute phase proteins were altered by 4-NP. Quantitative real-time PCR (Q-PCR) confirmed 4-NP altered the expression of complement components C8b, cathepsin L, C-type lectin domain, FK506 binding protein 2 precursor (FKBP2) and an EST (expressed sequence tag). SJW and 4-NP treated flounder demonstrated similar induction profiles for the EST, cathepsin L and FKBP2, suggesting that SJW was at a sufficient dose to alter gene expression but not induce P450s. In conclusion, testosterone hydroxylase activity and Western blots indicate that SJW did not activate detoxication pathways in a similar manner to 4-NP.  相似文献   

14.
为了探索力生长因子羧基端E结构域的后24个氨基酸组成的短肽(MGF-Ct24E)对成骨细胞生物学活性的影响,通过组织块培养法获得大鼠原代成骨细胞,采用MTT法和流式细胞仪检测细胞的增殖及细胞周期分布情况,基因芯片技术检测细胞基因表达谱,并用定量PCR实验验证芯片检测结果。结果显示MGF-Ct24E组的细胞增殖活性明显高于对照组,且在培养第一天促增殖效果最为显著。细胞周期结果显示MGF-Ct24E显著提高了S期和G2/M期的细胞所占比例。基因芯片检测发现差异表达基因共1397个,其中上调922,下调475,且差异表达的基因主要是关于细胞的增殖分化调节,生长因子结合和活性调节等方面。MGF-Ct24E对成骨细胞的这种增殖分化调控提示MGF-Ct24E在促进骨修复方面有着潜在的应用价值。  相似文献   

15.
Previous studies on changes in murine brain gene expression associated with the selection for ethanol preference have used F2 intercross or heterogeneous stock (HS) founders, derived from standard laboratory strains. However, these populations represent only a small proportion of the genetic variance available in Mus musculus. To investigate a wider range of genetic diversity, we selected mice for ethanol preference using an HS derived from the eight strains of the collaborative cross. These HS mice were selectively bred (four generations) for high and low ethanol preference. The nucleus accumbens shell of naive S4 mice was interrogated using RNA sequencing (RNA‐Seq). Gene networks were constructed using the weighted gene coexpression network analysis assessing both coexpression and cosplicing. Selection targeted one of the network coexpression modules (greenyellow) that was significantly enriched in genes associated with receptor signaling activity including Chrna7, Grin2a, Htr2a and Oprd1. Connectivity in the module as measured by changes in the hub nodes was significantly reduced in the low preference line. Of particular interest was the observation that selection had marked effects on a large number of cell adhesion molecules, including cadherins and protocadherins. In addition, the coexpression data showed that selection had marked effects on long non‐coding RNA hub nodes. Analysis of the cosplicing network data showed a significant effect of selection on a large cluster of Ras GTPase‐binding genes including Cdkl5, Cyfip1, Ndrg1, Sod1 and Stxbp5. These data in part support the earlier observation that preference is linked to Ras/Mapk pathways.  相似文献   

16.
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan ‘faster, easier, cheaper and more’, and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed‐field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of ‘complementary’ analyses that are often lacking from contemporary organelle genome papers, particularly short ‘genome announcement’ articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High‐throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.  相似文献   

17.
The effects of cryopreservation and long-term storage on substrate-specific cytochrome P45O-dependent activities and unscheduled DNA synthesis were studied in freshly isolated and cryopreserved hepatocytes derived from adult male Fischer 344 and Sprague-Dawley rats. Primary rat hepatocytes were isolated via an in situ collagenase perfusion technique, cryopreserved at –196°C, and thawed at 5 weeks and 104 and 156 weeks post-freezing. In Fischer 344 and Sprague-Dawley rats, cryopreserved hepatocytes were equivalent or similar to freshly isolated hepatocytes in substrate-specific activities for 7-ethoxyresorufin-0-deethylase and dimethylnitrosamine-N-demethylase and unscheduled DNA synthesis responses. No significant differences in activities toward 7-ethoxyresorufin-0-deethylase and dimethylnitrosamine-N-demethylase, the substrate-specific activities for cytochromes P4501A1 and P4501A2 and cytochrome P4502E1, respectively, were observed between freshly isolated and cryopreserved hepatocytes. Similar unscheduled DNA synthesis responses, a measure of DNA damage and repair, were observed after exposure to the genotoxic carcinogens 2-acetylaminofluorene, 7,12-dimethyEbenz[a]anthracene, and dimethylnitrosamine; although some decreases were also observed in Fischer 344 hepatocytes after 104 weeks and Sprague-Dawley hepatocytes after 156 weeks in the highest concentrations tested. These results suggest that cryopreserved hepatocytes, stored for extended periods of time in liquid nitrogen, are metabolically equivalent to freshly isolated hepatocytes in their ability to activate precarcinogens.Abbreviations 2-AAF 2-acetylaminofluorene - DDH2O distilled deionized water - DMBA 7,12-dimethyIbenz[a]anthracene - DMN dimethylnitrosamine - DMNA dimethylnitrosamine-N-demethylase - DMSO dimethyl sulfoxide - EROD 7-ethoxyresorufin-O-deethylase - F344 Fischer 344 - FBS fetal bovine serum - %IR percentage of cells in repair - LN2 liquid nitrogen - LSD least significant difference - CG cytoplasmic grains - NNG net nuclear grains - SD Sprague-Dawley - UDS unscheduled DNA synthesis - WE Williams' Medium E  相似文献   

18.
19.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

20.
Primary cultures of human hepatocytes and hepatoma cell line HepG2 are frequently used to evaluate the hepatic disposition of drugs and other xenobiotics. To check the variability of the expression of drug-metabolizing enzymes in these in vitro models, expression of genes coding for several cytochrome P450 isoforms and phase II enzymes was quantified during culture time by real-time RT-PCR. Gene expression was determined daily for primary hepatocytes maintained in a sandwich culture over 1 week and for HepG2, during the first 10 passages. In primary hepatocytes characteristic expression trends were observed which could be abstracted into three major classes of time curves. Genes of the first and the second class had an expression maximum around day 6 and day 4 in culture, respectively. The third class of genes had two expression peaks: at day 1 and 5 in culture. Surprisingly, also the cell line HepG2 showed significant expression changes during passages. For example, gene expression of cytochrome 1A1 varied 8-fold, that of cytochrome 2B6 30-fold, and that of NADP-quinone reductase 1 more than 200-fold within the first 10 passages. In conclusion, neither primary hepatocytes nor HepG2 cell line display a model for constant expression of drug-metabolizing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号