首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

2.
The hematopoietic reconstitution of cord blood (CB) CD34+ cells grown in static and stirred system was studied. Static cultures were better than stirred cultures for cell expansion. Engraftment of stirred-culture hematopoietic stem cells (HSCs) was higher than static-culture HSCs. Stirred-culture HSCs had better multilineage reconstitution ability and colony-forming ability than static-culture HSCs. Static cultures thus favor the expansion of HSCs and stirred cultures are more effective in preserving functional HSCs.  相似文献   

3.
4.
利用非肥胖糖尿病型重症联合免疫缺陷型(NOD/SCID)小鼠模型, 比较了新鲜及培养后的CD34+和CD34-细胞在体内植入及重建造血能力。从新鲜脐血及培养后的单个核细胞(MNC)中分离出CD34+和CD34-细胞, 经尾静脉输注入经亚致死剂量照射的NOD/SCID小鼠体内, 6周后处死存活的小鼠, 取其骨髓、脾脏和外周血细胞, 分别进行细胞表型分析、造血集落形成单位和人特异性基因的检测。经检测, 输注CD34+细胞和混合细胞的小鼠, 其体内CD45+细胞及人源各系血细胞的含量相近, 两者均远远高于输注CD34-细胞的小鼠。输注培养后CD34-细胞的小鼠饲养6周后全部死亡,输注培养后CD34+细胞的小鼠存活率约为66.7%, 而输注培养后混合细胞的小鼠全部存活, 且在两组存活的小鼠体内均能检测到CD45+细胞及人源各系血细胞。结果表明: 无论是新鲜还是培养后的CD34+细胞均具有在NOD/SCID小鼠体内植入和重建造血能力, 而CD34-细胞不具有该能力, 但CD34-细胞与CD34+细胞同时输注有助于提高小鼠的存活率, 说明其对CD34+细胞在小鼠体内发挥植入和造血重建能力有一定的辅助作用。  相似文献   

5.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

6.
The effects of hematopoietic stem/progenitor cells (HSPCs) expanded in the two step coculture with human bone marrow mesenchymal stem cells (hMSCs) on the hematopoietic reconstruction of irradiated NOD/SCID mice were studied. Mononuclear cells (MNCs) were isolated from human umbilical cord blood (UCB) and cultured in the non-coculture scheme of rhSCF + rhG-CSF + rhMDGF combination and the coculture scheme of rhSCF + rhG-CSF + rhMDGF + hMSCs. Sublethally-irradiated NOD/SCID mice were transplanted with ex vivo expanded HSPCs with the dose of 8.5 × 106 cells per mouse. After transplantation, the dynamics of WBC in the transplanted mice was measured periodically, and the Alu sequence fragment special for human in the transplanted mice was inspected by PCR. Results showed that the coculture scheme increased proliferation of UCB-derived HSPCs. After transplantation with expanded HSPCs, the population of WBC in the transplanted mice increased in 12 d and reached the first peak in 25 d, then showed the second increasing of WBC in 45∼55 d. Expanded cells from the coculture scheme appeared to be favorable for the second increasing of WBC in the transplanted mice. After 85 d, the Alu sequence fragment was detected in the probability of 87.5% (7/8) for the non-coculture scheme and 88.9% (8/9) for the coculture scheme. __________ Translated from Journal of Zhejiang University (Science Edition), 2005, 32 (4) [译自: 浙江大学学报 (理学版), 2005, 32 (4)]  相似文献   

7.
The effects of hematopoietic stem/progenitor cells(HSPCs)expanded in the two step coculture with human bone marrow mesenchymal stem cells(hMSCs)on the hematopoietic reconstruction of irradiated NOD/SCID mice were studied.Mononuclear cells(MNCs)were isolated from human umbilical cord blood(UCB)and cultured in the non-coculture scheme of rhSCF+rhG-CSF +rhMDGF combination and the coculture scheme of rhSCF+rhG-CSF+rhMDGF+hMSCS.Sublethally-irradiated NOD/SCID mice were transplanted with ex vivo expanded HSPCS with the dose of 8.5×106 cells per mouse.After transplantation.the dynamics of WBC in the transplanted mice was measured periodically,and the Alu sequence fragment special for human in the transplanted mice was inspected by PCR.Results showed that the coculture scheme increased proliferation of UCB-derived HSPCs.After transplantation with expanded HSPCS,the population of WBC in the transplanted mice increased in 12 d and reached the first peak in 25 d,then showed the second increasing of WBC in 45~55 d.Expanded cells from the coculture scheme appeared to be favorable for the second increasing of WBC in the transplanted mice.After 85 d,the Alu sequence fragment was detected in the probability of 87.5%(7/8)for the non-coculture scheme and 88.9%(8/9)for the coculture scheme.  相似文献   

8.
Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγnull (NOG) mice. Hypoxic culture (1% O2) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34+CD38 cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.  相似文献   

9.
In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.  相似文献   

10.
Since umbilical cord blood (UCB), contains a limited hematopoietic stem/progenitor cells (HSC) number, successful expansion protocols are needed to overcome the hurdles associated with inadequate numbers of HSC collected for transplantation. UCB cultures were performed using a human stromal‐based serum‐free culture system to evaluate the effect of different initial CD34+ cell enrichments (Low: 24 ± 1.8%, Medium: 46 ± 2.6%, and High: 91 ± 1.5%) on the culture dynamics and outcome of HSC expansion. By combining PKH tracking dye with CD34+ and CD34+CD90+ expression, we have identified early activation of CD34 expression on CD34? cells in Low and Medium conditions, prior to cell division (35 ± 4.7% and 55 ± 4.1% CD34+ cells at day 1, respectively), affecting proliferation/cell cycle status and ultimately determining CD34+/CD34+CD90+ cell yield (High: 14 ± 1.0/3.5 ± 1.4‐fold; Medium:22 ± 2.0/3.4 ± 1,0‐fold; Low:31 ± 3.0/4.4 ± 1.5‐fold) after a 7‐day expansion. Considering the potential benefits of using expanded UCB HSC in transplantation, here we quantified in single UCB units, the impact of using one/two immunomagnetic sorting cycles (corresponding to Medium and High initial progenitor content), and the average CD34+ cell recovery for each strategy, on overall CD34+ cell expansion. The higher cell recovery upon one sorting cycle lead to higher CD34+ cell numbers after 7 days of expansion (30 ± 2.0 vs. 13 ± 1.0 × 106 cells). In particular, a high (>90%) initial progenitor content was not mandatory to successfully expand HSC, since cell populations with moderate levels of enrichment readily increased CD34 expression ex‐vivo, generating higher stem/progenitor cell yields. Overall, our findings stress the importance of establishing a balance between the cell proliferative potential and cell recovery upon purification, towards the efficient and cost‐effective expansion of HSC for cellular therapy. J. Cell. Biochem. 112: 1822–1831, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

12.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

13.
14.
15.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

16.
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation.  相似文献   

17.
18.

Background

The aim of this study was to investigate gene transfer to human umbilical cord blood (CB) CD34+/CD38low and NOD/SCID repopulating cells using oncoretroviral vectors and to compare the transduction efficiency using three different viral envelopes.

Methods

CB cells were transduced on Retronectin using an MSCV‐based vector with the gene for GFP (MGIN), which was packaged into three different cell lines giving different envelopes: PG13‐MGIN (GALV), 293GPG‐MGIN (VSV‐G) or AM12‐MGIN (amphotropic).

Results

Sorted CD34+/CD38low cells were efficiently transduced after 3 days of cytokine stimulation and the percentage of GFP‐positive cells was 61.8±6.6% (PG13‐MGIN), 26.9±3.5% (293GPG‐MGIN), and 39.3±4.8% (AM12‐MGIN). For transplantation experiments, CD34+ cells were pre‐stimulated for 2 days before transduction on Retronectin preloaded with vector and with the addition of 1/10th volume of viral supernatant on day 3. On day 4, the expanded equivalent of 2.5×105 cells was injected into irradiated NOD/SCID mice. All three pseudotypes transduced NOD/SCID repopulating cells (SRCs) equally well in the presence of serum, but engraftment was reduced when compared with freshly thawed cells. Simultaneous transduction with all three vector pseudotypes increased the gene transfer efficiency to SRCs but engraftment was significantly impaired. There were difficulties in producing amphotropic vectors at high titers in serum‐free medium and transduction of CD34+ cells using VSV‐G‐pseudotyped vectors under serum‐free conditions was very inefficient. In contrast, transduction with PG13‐MGIN under serum‐free conditions resulted in the maintenance of SRCs during transduction, high levels of engraftment (29.3±6.6%), and efficient gene transfer to SRCs (46.2±4.8%).

Conclusions

The best conditions for transduction and engraftment of CB SRCs were obtained with GALV‐pseudotyped vectors using serum‐free conditions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.
20.
To elucidate the effect of gene transfected marrow stromal cell on expansion of human cord blood CD34+ cells, a culture system was established in which FL and TPO genes were transfected into human stromal cell line HFCL. To establish gene transfected stromal cells co-culture system, cord blood CD34+ cells were purified by using a magnetic beads sorting system. The number of all cells and the number of CD34+ cells and CFC (CFU-GM and BFU-E) were counted in different culture systems. The results showed that in all 8 culture systems, SCF+IL-3+HFT manifested the most potent combination, with the number of total nucleated cells increasing by (893.3 ±52.1)-fold, total progenitor cells (CFC) by (74.5 ±5.2)-fold and CD34+ cells by 15.7-fold. Maximal expansions of CFC and CD34+ cells were observed at the end of the second week of culture. Within 14 days of culture, (78.1 ± 5.5)-fold and (57.0 ± 19.7)-fold increases in CFU-GM and BFU-E were obtained. Moreover, generation of LTC-IC from amplified CD34+ cells within 28 days was found only in two combinations, i.e. SCF+IL-3+FL+TPO and SCF+IL-3+HFT, and there was no significant difference between these two groups statistically. These results suggest that human umbilical cord blood CD34+ cells can be extensively expandedex vivo by using gene transfected stromal cells along with cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号