首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Detection of anthrax spores in endemic regions of northern Canada   总被引:2,自引:0,他引:2  
AIMS: To determine the level of anthrax spore contamination in endemic regions of northern Canada between outbreaks. METHODS AND RESULTS: Bacterial endospores were extracted from specimens via flotation and cultured on selective PLET medium. Of 588 environmental specimens collected, 11 (1.9%) contained viable anthrax spores. CONCLUSION: High environmental concentrations of anthrax spores in northern Canada appear limited to scavenger faeces and anthrax carcass sites. Burial and cremation appear equally effective at removing anthrax spores from the immediate environment, though cremation may be improved by re-burning cremation sites containing unburned animal hair. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes an effective anthrax spore detection system. It provides the first bacteriological evidence that mammalian scavengers can disseminate anthrax spores in northern Canada, and its results may be compared with future environmental studies of untreated anthrax carcass sites to help improve government response plans.  相似文献   

2.
Quantitative analysis of anthrax spores from environmental samples is essential for accurate detection and risk assessment since Bacillus anthracis spores have been shown to be one of the most effective biological weapons. Using TaqMan real-time PCR, specific primers and probes were designed for the identification of pathogenic B. anthracis strains from pag gene and cap gene on two plasmids, pXO1 and pXO2, as well as a sap gene encoded on the S-layer. To select the appropriate lysis method of anthrax spore from environmental samples, several heat treatments and germination methods were evaluated with multiplex-PCR. Among them, heat treatment of samples suspended with sucrose plus non-ionic detergent was considered an effective spore disruption method because it detected up to 10(5) spores/g soil by multiplex-PCR. Serial dilutions of B. anthracis DNA and spore were detected up to a level of 0.1 ng/ microliters and 10 spores/ml, respectively, at the correlation coefficient of 0.99 by real-time PCR. Quantitative analysis of anthrax spore could be obtained from the comparison between C(T) value and serial dilutions of soil sample at the correlation coefficient of 0.99. Additionally, spores added to soil samples were detected up to 10(4) spores/g soil within 3 hr by real-time PCR. As a consequence, we established a rapid and accurate detection system for environmental anthrax spores using real-time PCR, avoiding time and labor-consuming preparation steps such as enrichment culturing and DNA preparation.  相似文献   

3.
AIMS: To develop a rapid, specific and sensitive diagnostic test for the detection of the spores of Bacillus anthracis on commercial samples of animal fibres (e.g. wool and cashmere). METHODS AND RESULTS: Extraction of DNA from spores using a mechanical disruption method based on bead beating was evaluated but subsequently abandoned as it compromised the sensitivity of the overall protocol. A multiplex PCR and two nested amplification reactions designed for B. anthracis were developed during this study. CONCLUSIONS: A simple selective incubation step in combination with multiplex PCR was found to be more effective than generic DNA extraction coupled to a sensitive nested amplification reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid diagnostic test could be applied to the analysis of commercial fibre samples for the detection of anthrax as required by health and safety legislation resulting in considerable savings in time and expense.  相似文献   

4.
Systematic evolution of ligands by exponential enrichment (SELEX) was used to select and PCR amplify DNA sequences (aptamers) capable of binding to and detecting nonpathogenic Sterne strain Bacillus anthracis spores. A simplified affinity separation approach was employed, in which autoclaved anthrax spores were used as the separation matrix. An aptamer-magnetic bead-electrochemiluminescence (AM-ECL) sandwich assay scheme was devised for detecting anthrax spores. Using a low SELEX DNA to spore ratio (154 ng DNA/10(6) spores), at least three distinct populations of single-stranded DNA aptamers, having varied affinities for anthrax spores, were noted by the AM-ECL assay. Results reflect detection of spore components with a dynamic range equivalent to < 10- > 6 x 10(6) anthrax spores. In the low DNA to spore ratio experiments, aptamers could be liberated from spore pellets by heating at 96 degrees C for 5 min after each round of SELEX. When a much higher DNA to spore ratio (10,256 ng DNA/10(6) spores) was used for SELEX development, a higher affinity set of aptamers was selected that could not be heat-eluted even at 99 degrees C for 5 min following round four of SELEX. However, high affinity spore surface bound aptamers were detectable via their 5'-biotinylated tails using labeled avidin and could be eluted in deionized water. Aptamers have potential for use as inexpensive, in vitro-generated receptors for biosensors in biological warfare detection and other areas.  相似文献   

5.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

6.
A murine monoclonal antibody produced against heat inactivated spores of Bacillus anthracis Ames, reacted with live or inactivated spores of several anthrax strains in indirect immunofluorescence (IF) tests. The reactive anthrax strain gave only a moderate degree of reaction. No staining of anthrax vegetative cells was observed. The monoclonal did not react with spores of non-anthrax Bacillus strains that gave cross reactions with mouse hyperimmune antiserum raised against Ames spores. The staining of individual spores in B. anthracis preparations was more heterogeneous with the monoclonal antibody than with the hyperimmune serum. Evidence is produced that the epitope for this monoclonal is not stable during long-term storage of inactivated spore preparations, and is not fully available for reaction with antibody until late in spore maturation. The monoclonal did not react by immunoblotting (Western blotting) of spore extracts. A monoclonal antibody produced against Ames spore extracts reacted with about 1% of Ames spores in IF tests, but not reproducible reactions with other anthrax strains were recorded. This monoclonal interacted with three bands in Western blots of anthrax spore extracts.  相似文献   

7.
AIMS: To determine the effectiveness of tert-butyl hydroperoxide (tBHP) plus the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and a tetra-amido macrocyclic ligand (TAML) activator in killing spores of Bacillus subtilis and the mechanisms of spore resistance to and killing by this reagent. METHODS AND RESULTS: Killing of spores of B. subtilis by tBHP was greatly stimulated by the optimum ratio of concentrations of a TAML activator (1.7 micromol l(-1)) to tBHP (4.4%, vol/vol) plus a low level (270 mg l(-1)) of CTAB. Rates of killing of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha(-)beta(-) spores) or the major DNA repair protein, RecA, by tBHP plus CTAB and a TAML activator were essentially identical to that of wild-type spore killing. Survivors of wild-type and alpha(-)beta(-) spores treated with tBHP plus CTAB and a TAML activator also exhibited no increase in mutations. Spores lacking much coat protein either because of mutation or chemical decoating were much more sensitive to this reagent than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with this reagent were sensitized to wet heat. The tBHP plus CTAB and TAML activator-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by application of 150 and 500 megaPascals of pressure for 15 min and by lysozyme treatment in hypertonic medium, but these spores lysed shortly after their germination. CONCLUSIONS: The combination of tBHP plus CTAB and a TAML activator is effective in killing B. subtilis spores. The spore coat is a major factor in spore resistance to this reagent system, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent system appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that tBHP plus CTAB and a TAML activator is an effective and mild decontaminant for spores of Bacillus species. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent system.  相似文献   

8.
Monoclonal antibodies against spore antigens of Bacillus anthracis   总被引:3,自引:0,他引:3  
Abstract A murine monoclonal antibody produced against heat inactivated spores of Bacillus anthracis Ames, reacted with live or inactivated spores of several anthrax strains in indirect immunofluorescence (IF) tests. The reactive anthrax strain gave only a moderate degree of reaction. No staining of anthrax vegetative cells was observed. The monoclonal did not react with spores of non-anthrax Bacillus strains that gave cross reactions with mouse hyperimmune antiserum raised against Ames spores. The staining of individual spores in B. anthracis preparations was more heterogeneous with the monoclonal antibody than with the hyperimmune serum. Evidence is produced that the epitope for this monoclonal is not stable during long-term storage of inactivated spore preparations, and is not fully available for reaction with antibody until late in spore maturation. The monoclonal did not react by immunoblotting (Western blotting) of spore extracts.  相似文献   

9.
AIMS: To determine the mechanisms of killing of Bacillus subtilis spores by ethanol or strong acid or alkali. METHODS AND RESULTS: Killing of B. subtilis spores by ethanol or strong acid or alkali was not through DNA damage and the spore coats did not protect spores against these agents. Spores treated with ethanol or acid released their dipicolinic acid (DPA) in parallel with spore killing and the core wet density of ethanol- or acid-killed spores fell to a value close to that for untreated spores lacking DPA. The core regions of spores killed by these two agents were stained by nucleic acid stains that do not penetrate into the core of untreated spores and acid-killed spores appeared to have ruptured. Spores killed by these two agents also did not germinate in nutrient and non-nutrient germinants and were not recovered by lysozyme treatment. Spores killed by alkali did not lose their DPA, did not exhibit a decrease in their core wet density and their cores were not stained by nucleic acid stains. Alkali-killed spores released their DPA upon initiation of spore germination, but did not initiate metabolism and degraded their cortex very poorly. However, spores apparently killed by alkali were recovered by lysozyme treatment. CONCLUSIONS: The data suggest that spore killing by ethanol and strong acid involves the disruption of a spore permeability barrier, while spore killing by strong alkali is due to the inactivation of spore cortex lytic enzymes.SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide further information on the mechanisms of spore killing by various chemicals.  相似文献   

10.
AIMS: The Cepheid GeneXpert is a four-site, automated sample preparation and real-time PCR detection system. In this study, the capability of the GeneXpert to isolate and detect nucleic acid from Bacillus anthracis Ames spores was assessed. METHODS AND RESULTS: A four-plex, dried-down bead cartridge containing PCR reagents specific for the pXO1 and pXO2 plasmids as well as sample processing and inhibition controls was evaluated. For B. anthracis Ames spores harbouring pXO1 and pXO2, samples containing 68 CFU per ml (148 spores per ml) were positive in all four replicates. A limited cross-reactivity panel, which included closely related Bacillus species, was also tested to determine the specificity of the pXO1 and pXO2 assays. No cross-reactivity occurred. Further, B. anthracis Sterne spore samples were analysed to compare results when processed using the GeneXpert to those run directly on the Cepheid SmartCycler without sample processing. The GeneXpert detection capability was three logs lower than the SmartCycler indicating the benefit of incorporating a nucleic acid extraction procedure. CONCLUSIONS: This study demonstrates that the GeneXpert is a rapid and reliable system for simultaneously detecting the B. anthracis virulence plasmids pXO1 and pXO2. SIGNIFICANCE AND IMPACT OF THE STUDY: The GeneXpert is the only platform currently available that is capable of both nucleic acid purification and real-time PCR detection enclosed within a single system. Further, all sample manipulations are automated, thus reducing errors associated with manual processing.  相似文献   

11.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

12.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

13.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to an acidic solution containing Fe(3+), EDTA, KI and ethanol termed the KMT reagent. METHODS AND RESULTS: Wild-type B. subtilis spores were not mutagenized by the KMT reagent but the wild-type and recA spores were killed at the same rate. Spores (alpha(-)beta(-)) lacking most DNA-protective alpha/beta-type small, acid-soluble spore proteins were less resistant to the KMT reagent than wild-type spores but were also not mutagenized, and alpha(-)beta(-) and alpha(-)beta(-)recA spores exhibited nearly identical resistance. Spore resistance to the KMT reagent was greatly decreased if spores had defective coats. However, the level of unsaturated fatty acids in the inner membrane did not determine spore sensitivity to the KMT reagent. Survivors in spore populations killed by the KMT reagent were sensitized to killing by wet heat or nitrous acid and to high salt in plating medium. KMT reagent-killed spores had not released their dipicolinic acid (DPA), although these killed spores released their DPA more readily when germinated with dodecylamine than did untreated spores. However, KMT reagent-killed spores did not germinate with nutrients or Ca(2+)-DPA and were recovered only poorly by lysozyme treatment in a hypertonic medium. CONCLUSIONS: The KMT reagent does not kill spores by DNA damage and a major factor in spore resistance to this reagent is the spore coat. KMT reagent treatment damages the spore's ability to germinate, perhaps by damaging the spore's inner membrane. However, this damage is not oxidation of unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanism of spore resistance to and killing by the KMT reagent developed for killing Bacillus spores.  相似文献   

14.
AIMS: To determine the effect of sporulation temperature on Bacillus subtilis spore resistance and spore composition. METHODS AND RESULTS: Bacillus subtilis spores prepared at temperatures from 22 to 48 degrees C had identical amounts of dipicolinic acid and small, acid-soluble proteins but the core water content was lower in spores prepared at higher temperatures. As expected from this latter finding, spores prepared at higher temperatures were more resistant to wet heat than were spores prepared at lower temperatures. Spores prepared at higher temperatures were also more resistant to hydrogen peroxide, Betadine, formaldehyde, glutaraldehyde and a superoxidized water, Sterilox. However, spores prepared at high and low temperatures exhibited nearly identical resistance to u.v. radiation and dry heat. The cortex peptidoglycan in spores prepared at different temperatures showed very little difference in structure with only a small, albeit significant, increase in the percentage of muramic acid with a crosslink in spores prepared at higher temperatures. In contrast, there were readily detectable differences in the levels of coat proteins in spores prepared at different temperatures and the levels of at least one coat protein, CotA, fell significantly as the sporulation temperature increased. However, this latter change was not due to a reduction in cotA gene expression at higher temperatures. CONCLUSIONS: The temperature of sporulation affects a number of spore properties, including resistance to many different stress factors, and also results in significant alterations in the spore coat and cortex composition. SIGNIFICANCE AND IMPACT OF THE STUDY: The precise conditions for the formation of B. subtilis spores have a large effect on many spore properties.  相似文献   

15.
Summary Paenibacillus larvae causes American foulbrood (AFB), a severe disease that affects the brood of honey bee Apis mellifera. AFB is worldwide distributed and causes great economic losses to beekeepers, but in many cases early diagnosis could help in its prevention and control. The aim of the present work was to design a reliable protocol for DNA extraction of P. larvae spores from naturally contaminated honey and adult bees. A novel method that includes a step of spore-decoating followed by an enzymatic spore disruption and DNA purification was developed. Also a freeze-thaw cycle protocol was tested and the results were compared. The DNA extracted was used as template for specific bacterial detection by amplification of a 16S rDNA fragment. Both methods allowed the direct detection by polymerase chain reaction (PCR) of P. larvae spores present in naturally contaminated material. The spore-decoating strategy was the most successful method for DNA extraction from spores, allowing specific and remarkably sensitive PCR detection of spores in all honey and bees tested samples. On the other hand freeze-thawing was only effective for detection of spores recovered from bees, and extensive damage to DNA affected detection by PCR. This work provides new strategies for spore DNA extraction and detection by PCR with high sensitivity, and brings an alternative tool for P. larvae detection in natural samples.  相似文献   

16.
It is well known that non-viable mold contaminants such as macrocyclic trichothecene mycotoxins of Stachybotrys chartarum are highly toxinigenic to humans. However, the method of recovering native mycotoxin has been without consensus. Inconsistencies occur in the methods of isolation, suspension, preparation, and quantitation of the mycotoxin from the spores. The purpose of this study was to provide quantitatively comparative data on three concurrent preparations of 10(6)S. chartarum spores. The experiments were designed to specifically evaluate a novel method of mycotoxin extraction, solubilization, and the subsequent inhibitory effect in an established in vitro luminescence protein translation assay from 30 day-old spores. The mycotoxin-containing spores swabbed from wallboard cultures were milled with and without glass beads in 100% methanol, 95% ethanol, or water. Milled spore lysates were cleared of cell debris by filter centrifugation followed by a second centrifugation through a 5000 MWCO filter to remove interfering proteins and RNases. Cleared lysate was concentrated by centrivap and suspended in either alcohol or water as described. The suspensions were used immediately in the in vitro luminescence protein translation assay with the trichothecene, T-2 toxin, as a control. Although, mycotoxin is reported to be alcohol soluble, the level of translation inhibition was not reliably satisfactory for either the methanol or ethanol preparations. In fact, the methanol and ethanol control reactions were not significantly different than the alcohol prepared spore samples. In addition, we observed that increasing amounts of either alcohol inhibited the reaction in a dose dependent manner. This suggests that although alcohol isolation of mycotoxin is desirable in terms of time and labor, the presence of alcohol in the luminescence protein translation reaction was not acceptable. Conversely, water extraction of mycotoxin demonstrated a dose dependent response, and there was significant difference between the water controls and the water extracted mycotoxin reactions. In our hands, water was the best extraction agent for mycotoxin when using this specific luminescence protein translation assay kit.  相似文献   

17.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

18.
A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.  相似文献   

19.
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially because anthrax is an emerging bioterrorism agent. The exact mechanisms leading to a severe clinical form through the inhalational route are still unclear, particularly how immobile spores are captured in the alveoli and transported to the lymph nodes in the early steps of infection. We investigated the roles of alveolar macrophages and lung dendritic cells (LDC) in spore migration. We demonstrate that alveolar macrophages are the first cells to phagocytose alveolar spores, and do so within 10 min. However, interstitial LDCs capture spores present in the alveoli within 30 min without crossing the epithelial barrier suggesting a specific mechanism for rapid alveolus sampling by transepithelial extension. We show that interstitial LDCs constitute the cell population that transports spores into the thoracic lymph nodes from within 30 min to 72 h after intranasal infection. Our results demonstrate that LDCs are central to spore transport immediately after infection. The rapid kinetics of pathogen transport may contribute to the clinical features of inhalational anthrax.  相似文献   

20.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号