首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate the role of tissue oxygenation in some of the factors that are thought to regulate muscle respiration and metabolism. Tissue oxygenation was altered by reductions in O2 delivery (muscle blood flow x arterial O2 content), induced by decreases in arterial PO2 (PaO2). O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius at rest and while working at two stimulation intensities (isometric tetanic contractions at 0.5 and 1 contractions/s) on three separate occasions, with only the level of PaO2 (78, 30, and 21 Torr) being different for each occasion. Muscle blood flow was held constant (pump perfusion) at each work intensity for the three different levels of PaO2. Muscle biopsies were obtained at the end of each rest and work period. Muscle VO2 was significantly less (P less than 0.05) at both stimulation intensities for the hypoxemic conditions, whereas [ATP] was reduced only during the highest work intensity during both hypoxemic conditions (31% reduction at 21 Torr PaO2 and 17% at 30 Torr). For each level of PaO2, the relationships between the changes that occurred in VO2 and levels of phosphocreatine, ADP, and ATP/ADP.P(i) as the stimulation intensity was increased were significantly correlated; however, the slopes and intercepts of these lines were significantly different for each PaO2. Thus a greater change in any of the proposed regulators of tissue respiration (e.g., phosphocreatine, ADP) was required to achieve a given VO2 as PaO2 was decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The factors that determine maximal O2 uptake (VO2max) and muscle performance during severe, acute hypoxemia were studied in isolated, in situ dog gastrocnemius muscle. Our hypothesis that VO2max is limited by O2 diffusion in muscle predicts that decreases in VO2max, caused by hypoxemia, will be accompanied by proportional decreases in muscle effluent venous PO2 (PvO2). By altering the fraction of inspired O2, four levels of arterial PO2 (PaO2) [21 +/- 2, 28 +/- 1, 44 +/- 1, and 80 +/- 2 (SE) Torr] were induced in each of eight dogs. Muscle arterial and venous circulation was isolated and arterial pressure held constant by pump perfusion. Each muscle worked maximally (3 min at 5-6 Hz, isometric twitches) at each PaO2. Arterial and venous samples were taken to measure lactate, [H+], PO2, PCO2, and muscle VO2. Muscle biopsies were taken to measure [H+] (homogenate method) and lactate. VO2max decreased with PaO2 and was linearly (R = 0.99) related to both PVO2 and O2 delivery. As PaO2 fell, fatigue increased while muscle lactate and [H+] increased. Lactate release from the muscle did not change with PaO2. This suggests a barrier to lactate efflux from muscle and a possible cause of the greater fatigue seen in hypoxemia. The gas exchange data are consistent with the hypothesis that VO2max is limited by peripheral tissue diffusion of O2.  相似文献   

3.
A previous study (Grassi B, Gladden LB, Samaja M, Stary CM, and Hogan MC, J Appl Physiol 85: 1394-1403, 1998) showed that convective O(2) delivery to muscle did not limit O(2) uptake (VO(2)) on-kinetics during transitions from rest to contractions at approximately 60% of peak VO(2). The present study aimed to determine whether this finding is also true for transitions involving contractions of higher metabolic intensities. VO(2) on-kinetics were determined in isolated canine gastrocnemius muscles in situ (n = 5) during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions corresponding to the muscle peak VO(2). Two conditions were compared: 1) spontaneous adjustment of muscle blood flow (Q) (Control) and 2) pump-perfused Q, adjusted approximately 15-30 s before contractions at a constant level corresponding to the steady-state value during contractions in Control (Fast O(2) Delivery). In Fast O(2) Delivery, adenosine was infused intra-arterially. Q was measured continuously in the popliteal vein; arterial and popliteal venous O(2) contents were measured at rest and at 5- to 7-s intervals during the transition. Muscle VO(2) was determined as Q times the arteriovenous blood O(2) content difference. The time to reach 63% of the VO(2) difference between resting baseline and steady-state values during contractions was 24.9 +/- 1.6 (SE) s in Control and 18.5 +/- 1.8 s in Fast O(2) Delivery (P < 0.05). Faster VO(2) on-kinetics in Fast O(2) Delivery was associated with an approximately 30% reduction in the calculated O(2) deficit and with less muscle fatigue. During transitions involving contractions at peak VO(2), convective O(2) delivery to muscle, together with an inertia of oxidative metabolism, contributes in determining the VO(2) on-kinetics.  相似文献   

4.
Threshold for muscle lactate accumulation during progressive exercise   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the relationship between muscle and blood lactate concentrations during progressive exercise. Seven endurance-trained male college students performed three incremental bicycle ergometer exercise tests. The first two tests (tests I and II) were identical and consisted of 3-min stage durations with 2-min rest intervals and increased by 50-W increments until exhaustion. During these tests, blood was sampled from a hyperemized earlobe for lactate and pH measurement (and from an antecubital vein during test I), and the exercise intensities corresponding to the lactate threshold (LT), individual anaerobic threshold (IAT), and onset of blood lactate accumulation (OBLA) were determined. The test III was performed at predetermined work loads (50 W below OBLA, at OBLA, and 50 W above OBLA), with the same stage and rest interval durations of tests I and II. Muscle biopsies for lactate and pH determination were taken at rest and immediately after the completion of the three exercise intensities. Blood samples were drawn simultaneously with each biopsy. Muscle lactate concentrations increased abruptly at exercise intensities greater than the "below-OBLA" stage [50.5% maximal O2 uptake (VO2 max)] and resembled a threshold. An increase in blood lactate and [H+] also occurred at the below-OBLA stage; however, no significant change in muscle [H+] was observed. Muscle lactate concentrations were highly correlated to blood lactate (r = 0.91), and muscle-to-blood lactate ratios at below-OBLA, at-OBLA, and above-OBLA stages were 0.74, 0.63, 0.96, and 0.95, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A perfluorocarbon emulsion [formulation containing 90% wt/vol perflubron (perfluorooctylbromide); Alliance Pharmaceutical] was used to increase O2 solubility in the plasma compartment during hyperoxic low hemoglobin concentration ([Hb]) perfusion of a maximally working dog muscle in situ. Our hypothesis was that the increased plasma O2 solubility would increase the muscle O2 diffusing capacity (DO2) by augmenting the capillary surface area in contact with high [O2]. Oxygen uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 4) while working for 6 min at a maximal stimulation rate of 1 Hz (isometric tetanic contractions) on three to four separate occasions for each muscle. On each occasion, the last 4 min of the 6-min work period was split into 2 min of a control treatment (only emulsifying agent mixed into blood) and 2 min of perflubron treatment (6 g/kg body wt), reversing the order for each subsequent work bout. Before contractions, the [Hb] of the dog was decreased to 8-9 g/100 ml and arterial PO2 was increased to 500-600 Torr by having the dog breathe 100% O2 to maximize the effect of the perflubron. Muscle blood flow was held constant between the two experimental conditions. Plasma O2 solubility was almost doubled to 0.005 ml O2 x 100 ml blood-1 x Torr-1 by the addition of the perflubron. Muscle O2 delivery and maximal VO2 were significantly improved (at the same blood flow and [Hb]) by 11 and 12.6%, respectively (P < 0.05), during the perflubron treatment compared with the control. O2 extraction by the muscle remained the same between the two treatments, as did the estimate of DO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To test the hypothesis that maximal O2 uptake (VO2max) can be limited by O2 diffusion in the peripheral tissue, we kept O2 delivery [blood flow X arterial O2 content (CaO2)] to maximally contracting muscle equal between 1) low flow-high CaO2 and 2) high flow-low CaO2 conditions. The hypothesis predicts, because of differences in the capillary PO2 profile, that the former condition will result in both a higher VO2max and muscle effluent venous PO2 (PVO2). We studied the relations among VO2max, PVO2, and O2 delivery during maximal isometric contractions in isolated, in situ dog gastrocnemius muscle (n = 6) during these two conditions. O2 delivery was matched by varying arterial O2 partial pressure and adjusting flow to the muscle accordingly. A total of 18 matched O2 delivery pairs were obtained. As planned, O2 delivery was not significantly different between the two treatments. In contrast, VO2max was significantly higher [10.4 +/- 0.5 (SE) ml.100 g-1.min-1; P = 0.01], as was PVO2 (25 +/- 1 Torr; P less than 0.01) in the low flow-high CaO2 treatment compared with the high flow-low CaO2 treatment (9.1 +/- 0.4 ml.100 g-1.min-1 and 20 +/- 1 Torr, respectively). The rate of fatigue was greater in the high flow-low CaO2 condition, as was lactate output from the muscle and muscle lactate concentration. The results of this study show that VO2max is not uniquely dependent on O2 delivery and support the hypothesis that VO2max can be limited by peripheral tissue O2 diffusion.  相似文献   

7.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

8.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.  相似文献   

9.
The influence of acute hypoxia (30 < or = PaO(2) < or = 100 mmHg) on the values of VO(2)max and parameters of oxygen transport in muscle working at VO(2)max was studied. We investigated muscle working under different values of blood flow F (60 < or = F < or = 120 ml/min per 100 g), blood pH (7.0-7.6), and different diffusion conditions. Investigations were performed on a computer model of O(2) delivery to and O(2) consumption in the working muscle. VO(2)max, PvO(2), pO(2)- and VO(2)-distribution in muscle fiber were calculated. It was shown that the greater the degree of arterial hypoxemia, the lower the muscle VO(2)max and blood pO(2) values. When working at VO(2)max, the average and minimal values of tissue pO(2) depend on PaO(2). The greater the blood flow through muscle, the greater the VO(2)max. However, with an increasing degree of arterial hypoxemia, the effect of F and blood pH on the value of VO(2)max is weakened. The diffusion conditions produced a powerful influence on the VO(2)max value. At reduced PaO(2) they are the most important limiting factors of O(2) supply to muscle working at maximal effort.  相似文献   

10.
We investigated the relationships among maximal O2 uptake (VO2max), effluent venous PO2 (PvO2), and calculated mean capillary PO2 (PCO2) in isolated dog gastrocnemius in situ as arterial PO2 (PaO2) was progressively reduced with muscle blood flow held constant. The hypothesis that VO2max is determined in part by peripheral tissue O2 diffusion predicts proportional declines in VO2max and PCO2 if the diffusing capacity of the muscle remains constant. The inspired O2 fraction was altered in each of six dogs to produce four different levels of PaO2 [22 +/- 2, 29 +/- 1, 38 +/- 1, and 79 +/- 4 (SE) Torr]. Muscle blood flow, with the circulation isolated, was held constant at 122 +/- 15 ml.100 g-1.min-1 while the muscle worked maximally (isometric twitches at 5-7 Hz) at each of the four different values of PaO2. Arterial and venous samples were taken to measure lactate, pH, PO2, PCO2, and muscle VO2. PCO2 was calculated using Fick's law of diffusion and a Bohr integration procedure. VO2max fell progressively (P less than 0.01) with decreasing PaO2. The decline in VO2max was proportional (R = 0.99) to the fall in both muscle PvO2 and calculated PCO2 while the calculated muscle diffusing capacity was not different among the four conditions. Fatigue developed more rapidly with lower PaO2, although lactate output from the muscle was not different among conditions. These results are consistent with the hypothesis that resistance to O2 diffusion in the peripheral tissue may be a principal determinant of VO2max.  相似文献   

11.
We investigated the effect of increasing hemoglobin- (Hb) O2 affinity on muscle maximal O2 uptake (VO2max) while muscle blood flow, [Hb], HbO2 saturation, and thus O2 delivery (muscle blood flow X arterial O2 content) to the working muscle were kept unchanged from control. VO2max was measured in isolated in situ canine gastrocnemius working maximally (isometric tetanic contractions). The muscles were pump perfused, in alternating order, with either normal blood [O2 half-saturation pressure of hemoglobin (P50) = 32.1 +/- 0.5 (SE) Torr] or blood from dogs that had been fed sodium cyanate (150 mg.kg-1.day-1) for 3-4 wk (P50 = 23.2 +/- 0.9). In both conditions (n = 8) arterial PO2 was set at approximately 200 Torr to fully saturate arterial blood, which thereby produced the same arterial O2 contents, and muscle blood flow was set at 106 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. VO2max was 11.8 +/- 1.0 ml.min-1.100 g-1 when perfused with the normal blood (control) and was reduced by 17% to 9.8 +/- 0.7 ml.min-1.100 g-1 when perfused with the low-P50 blood (P less than 0.01). Mean muscle effluent venous PO2 was also significantly less (26 +/- 3 vs. 30 +/- 2 Torr; P less than 0.01) in the low-P50 condition, as was an estimate of the capillary driving pressure for O2 diffusion, the mean capillary PO2 (45 +/- 3 vs. 51 +/- 2 Torr). However, the estimated muscle O2 diffusing capacity was not different between conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Patients with the adult respiratory distress syndrome (ARDS) show a pathological dependence of O2 consumption (VO2) on O2 delivery (QO2, blood flow X arterial O2 content). In these patients, a defect in tissues' ability to extract O2 from blood can leave tissue O2 needs unmet, even at a normal QO2. Endotoxin administration produces a similar state in dogs, and we used this model to study mechanisms that may contribute to human pathology. We measured systemic and hindlimb VO2 and QO2 while reducing cardiac output by blood withdrawal. At the onset of supply dependence, the systemic QO2 was 11.4 +/- 2.7 ml.kg-1.min-1 in the endotoxin group vs. 8.0 +/- 0.7 in controls (P less than 0.05). At this point, the endotoxin-treated animals extracted only 61 +/- 11% of the arterial O2, whereas control animals extracted 70 +/- 7% (P less than 0.05). Systemic VO2 rose by 15% after endotoxin (P less than 0.05) but did not change in controls. Despite this poorer systemic ability to extract O2 by the endotoxin-treated dogs, isolated hindlimb O2 extraction at the onset of supply dependence was the same in endotoxin-treated and control dogs. At normal levels of QO2, hindlimb VO2 in endotoxin-treated dogs was 23% higher than in controls (P less than 0.05). Fractional blood flow to skeletal muscle did not differ between control and endotoxin-treated dogs. Thus skeletal muscle was not overperfused in endotoxemia and did not contribute to a systemic extraction defect by stealing blood flow from other tissues. Skeletal muscle in endotoxin-treated dogs demonstrated an increase in VO2 but no defect in O2 extraction, differing in both respects from the intestine.  相似文献   

13.
Maximal O2 delivery and O2 uptake (VO2) per 100 g of active muscle mass are far greater during knee extensor (KE) than during cycle exercise: 73 and 60 ml. min-1. 100 g-1 (2.4 kg of muscle) (R. S. Richardson, D. R. Knight, D. C. Poole, S. S. Kurdak, M. C. Hogan, B. Grassi, and P. D. Wagner. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H1453-H1461, 1995) and 28 and 25 ml. min-1. 100 g-1 (7.5 kg of muscle) (D. R. Knight, W. Schaffartzik, H. J. Guy, R. Predilleto, M. C. Hogan, and P. D. Wagner. J. Appl. Physiol. 75: 2586-2593, 1993), respectively. Although this is evidence of muscle O2 supply dependence in itself, it raises the following question: With such high O2 delivery in KE, are the quadriceps still O2 supply dependent at maximal exercise? To answer this question, seven trained subjects performed maximum KE exercise in hypoxia [0.12 inspired O2 fraction (FIO2)], normoxia (0.21 FIO2), and hyperoxia (1.0 FIO2) in a balanced order. The protocol (after warm-up) was a square wave to a previously determined maximum work rate followed by incremental stages to ensure that a true maximum was achieved under each condition. Direct measures of arterial and venous blood O2 concentration in combination with a thermodilution blood flow technique allowed the determination of O2 delivery and muscle VO2. Maximal O2 delivery increased with inspired O2: 1.3 +/- 0.1, 1.6 +/- 0.2, and 1.9 +/- 0.2 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Maximal work rate was affected by variations in inspired O2 (-25 and +14% at 0.12 and 1.0 FIO2, respectively, compared with normoxia, P < 0.05) as was maximal VO2 (VO2 max): 1.04 +/- 0.13, 1. 24 +/- 0.16, and 1.45 +/- 0.19 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Calculated mean capillary PO2 also varied with FIO2 (28.3 +/- 1.0, 34.8 +/- 2.0, and 40.7 +/- 1.9 Torr at 0.12, 0.21, and 1.0 FIO2, respectively, P < 0.05) and was proportionally related to changes in VO2 max, supporting our previous finding that a decrease in O2 supply will proportionately decrease muscle VO2 max. As even in the isolated quadriceps (where normoxic O2 delivery is the highest recorded in humans) an increase in O2 supply by hyperoxia allows the achievement of a greater VO2 max, we conclude that, in normoxic conditions of isolated KE exercise, KE VO2 max in trained subjects is not limited by mitochondrial metabolic rate but, rather, by O2 supply.  相似文献   

14.
We studied muscle blood flow, muscle oxygen uptake (VO(2)), net muscle CO uptake, Mb saturation, and intracellular bioenergetics during incremental single leg knee-extensor exercise in five healthy young subjects in conditions of normoxia, hypoxia (H; 11% O(2)), normoxia + CO (CO(norm)), and 100% O(2) + CO (CO(hyper)). Maximum work rates and maximal oxygen uptake (VO(2 max)) were equally reduced by approximately 14% in H, CO(norm), and CO(hyper). The reduction in arterial oxygen content (Ca(O(2))) (approximately 20%) resulted in an elevated blood flow (Q) in the CO and H trials. Net muscle CO uptake was attenuated in the CO trials. Suprasystolic cuff measurements of the deoxy-Mb signal were not different in terms of the rate of signal rise or maximum signal attained with and without CO. At maximal exercise, calculated mean capillary PO(2) was most reduced in H and resulted in the lowest Mb-associated PO(2). Reductions in ATP, PCr, and pH during H, CO(norm), and CO(hyper) occurred earlier during progressive exercise than in normoxia. Thus the effects of reduced Ca(O(2)) due to mild CO poisoning are similar to H.  相似文献   

15.
The purpose of this study was to investigate the relationship between muscle oxygenation level at exhaustion and maximal oxygen uptake (VO2max) in an incremental cycling exercise. Nine male subjects took part in an incremental exhaustive cycling exercise, and then cuff occlusion was performed. Changes in oxy-(deltaHbO2) and deoxy-(deltaHb) hemoglobin concentrations in the vastus lateralis muscle were measured with a near infrared spectroscopy (NIRS). Muscle oxygenation during incremental exercise was expressed as a percentage (%Moxy) of the maximal range observed during an arterial occlusion as the lower reference point. A systematic decrease was observed in %Moxy with increasing intensity. A significant relationship was observed between %Moxy at exhaustion and VO2max (p < 0.01). We concluded that the one of the limiting factor of VO2max is the muscle oxygen diffusion capacity, and %Moxy during exercise could be one of the indexes of muscle oxygen diffusion capacity.  相似文献   

16.
Mean arterial pressure (Pa), heart rate, cardiac output (Q), and Q distribution (with radiolabeled microspheres) were measured in miniature swine as they ran at high levels on a motor-driven treadmill. Each animal ran on two occasions: once during exercise at maximal O2 uptake (VO2max) and once at an intensity estimated to require approximately 115% VO2max. The purpose was to assess these cardiovascular variables to determine whether the calculated resistance to blood flow during supramaximal exercise was different from that during maximal exercise. A total of 114 tissues/organs were dissected for blood flow analysis. Pa and Q were unaltered between the two exercise conditions. Blood flow to all but one of the 62 skeletal muscles sampled was unchanged between conditions as were the blood flows to the visceral organs and brain. The results demonstrate that vascular resistance was constant in all these tissues between maximal and supramaximal exercise intensities. Elevated blood flows were measured in 7 of the 11 coronary sites sampled. Calculated resistance to blood flow indicated that a decrease in resistance occurred in most of the samples having elevated blood flow. Because heart rate was elevated during the supramaximal exercise, the increase in blood flow was probably in response to the greater myocardial work and concomitant elevation in O2 demand. In summary, it was shown that Pa, Q, and Q distribution in most tissues remained unchanged during exercise at intensities above VO2max. Thus a precise matching occurs between the increasingly powerful vasoconstrictor drive initiated by the sympathetic nervous system and the elevated local vasodilatory drive responding to the greater O2 demand during the supramaximal exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate tests (70-80% peak) receiving proportional assisted ventilation (PAV) or sham ventilation. Relative changes (Delta%) in deoxy-hemoglobyn, oxi-Hb ([O2Hb]), tissue oxygenation index, and total Hb ([HbTOT], an index of local blood volume) in the vastus lateralis were measured by near infrared spectroscopy. In addition, QT was monitored by impedance cardiography and arterial O2 saturation by pulse oximetry (SpO2). There were significant improvements in exercise tolerance (Tlim) with PAV. Blood lactate, leg effort/Tlim and dyspnea/Tlim were lower with PAV compared with sham ventilation (P < 0.05). There were no significant effects of RM unloading on systemic O2 delivery as QT and SpO2 at submaximal exercise and at Tlim did not differ between PAV and sham ventilation (P > 0.05). Unloaded breathing, however, was related to enhanced leg muscle oxygenation and local blood volume compared with sham, i.e., higher Delta[O2Hb]% and Delta[HbTOT]%, respectively (P < 0.05). We conclude that RM unloading had beneficial effects on the oxygenation status and blood volume of the exercising muscles at similar systemic O2 delivery in patients with advanced CHF. These data suggest that blood flow was redistributed from respiratory to locomotor muscles during unloaded breathing.  相似文献   

19.
We tested the hypothesis that contracting skeletal muscle can rapidly restore force development during reperfusion after brief total ischemia and that this rapid recovery depends on O(2) availability and not an alternate factor related to blood flow. Isolated canine gastrocnemius muscle (n = 5) was stimulated to contract tetanically (isometric contraction elicited by 8 V, 0.2-ms duration, 200-ms trains, at 50-Hz stimulation) every 2 s until steady-state conditions of muscle blood flow (controlled by pump perfusion) and developed force were attained (3 min). While maintaining the same stimulation pattern, muscle blood flow was then reduced to zero (complete ischemia) for 2 min. Normal blood flow was then restored to the contracting muscle; however, two distinct conditions of oxygenation (at the same blood flow) were sequentially imposed: deoxygenated blood (30 s), blood with normal arterial O(2) content (30 s), a return to deoxygenated blood (30 s), and finally a return to normal arterial O(2) content (90 s). During the ischemic period, force development fell to 39 +/- 6 (SE)% of normal (from 460 +/- 40 to 170 +/- 20 N/100 g). When muscle blood flow was restored to normal by perfusion with deoxygenated blood, developed force continued to decline to 140 +/- 20 N/100 g. Muscle force rapidly recovered to 310 +/- 30 N/100 g (P < 0.05) during the 30 s in which the contracting muscle was perfused with oxygenated blood and then fell again to 180 +/- 30 N/100 g when perfused with blood with low PO(2). These findings demonstrate that contracting skeletal muscle has the capacity for rapid recovery of force development during reperfusion after a short period of complete ischemia and that this recovery depends on O(2) availability and not an alternate factor related to blood flow restoration.  相似文献   

20.
In order to investigate the potential role of cytosolic phosphates ([ATP], [ADP] and [Pi]) in the integration of mitochondrial respiration and mechanical function in the perfused heart, inhibition of the substrate end of the respiratory chain by amytal has been employed. A stepwise increase in amytal concentration (from 0.2 to 1.2 mM) resulted in the progressive abolition of the cardiac oxygen consumption, rate (VO2) in hearts oxidizing pyruvate (5 mM). The inhibition curve for VO2 was S-shaped, with K0.5 = 1.1 mM, and independent of the initial VO2 values varied by coronary flow and isoproterenol (Iso) addition. ADP-stimulated respiration of isolated mitochondria (malate + pyruvate) was twice as sensitive to amytal inhibition, whereas state 2 respiration (before ADP addition) had the same sensitivity as cardiac VO2. Decrease in VO2 was followed by a decline in phosphocreatine (PCr) content and augmentation of Pi at nearly constant ATP level and intracellular pH as assessed by the 31P-NMR method. These changes were associated with an elevation of cytosolic free [ADP] and a reduction of the [ATP]/[ADP] ratio and ATP affinity calculated from creatine kinase equilibrium. Concomitantly, pressure-rate product (PRP), maximal rates of contraction and relaxation fell down and the end diastolic pressure (EDP) rose at all initial loads. Amytal-inhibited hearts retained the capability to respond to Iso stimulation (0.1 microM, about 50% enhancement of PRP) even at 1 mM amytal, but their response to elevation of coronary flow was greatly diminished. Alterations in the PRP value induced by the inhibitor at a fixed coronary flow correlated negatively with cytosolic [ADP] and [Pi], and positively with [ATP]/[ADP] and A(ATP). In contrast, EDP correlated with all these parameters in the opposite manner. However, when PRP was varied by coronary flow in the absence of the inhibitor or at its fixed concentrations, such correlations were absent. These data imply that cytosolic phosphates can serve as a feedback between energy production and utilization when the control point(s) is (are) at the mitochondria. In contrast, other regulatory mechanisms should be involved when control is distributed among different steps located both in energy producing and utilizing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号