首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated 4 different clones of the P-450(11 beta) gene from a bovine genomic library. These genomic clones were highly homologous with each other. Two of the isolated clones were pseudogenes. Determination of its nucleotide sequences indicated that the bovine P-450(11 beta) gene is divided into 9 exons by 8 introns and that it is about 8.5 kb in total length. The number of exons and the locations of intron insertion into the P-450(11 beta) gene are identical with those in the case of P-450(SCC), but different from those of other microsomal P-450s.  相似文献   

2.
3.
4.
5.
Using the optical absorbance spectroscopy method, the interaction of a number of biospecific ligands (steroids, adrenodoxin) with homogeneous cytochrome P-450 (11 beta) from bovine adrenal mitochondria was investigated. The parameters of the steroid-protein interaction in a number of substrates and products of the 11 beta- and 18 (19)-hydroxylation with the active site of cytochrome P-450 (11 beta) were determined. A sharp decrease in the cytochrome affinity for steroids upon the insertion of the first hydroxy group was observed, which provides for a predominant formation of monohydroxylated products from the substrate and minimum amounts of dihydroxylated ones, despite the presence of more than one position for the substrate hydroxylation by cytochrome P-450 (11 beta). Some structural elements of the steroid molecule were determined as any alterations in these strongly affect the enzyme affinity for the steroid. These structures are: 1) delta 4-3-oxo structure; 2) either 21-hydroxy group of pregnen steroids or the one fulfilling its functions, 17 beta-hydroxy or 17-oxo group of androsten steroids, and 3) the 11th position of all the substrates under study. It was shown that the binding of various substrates into stoichiometric (1:1) steroid-protein complexes provides a transition to high spin state from 30-40% (cortisol, corticosterone) to 90-95% (11-deoxycorticosterone) of hemoprotein iron. Using the experimental system containing individual cytochrome P-450 (11 beta) and adrenodoxin, as well as the steroid and nonionic detergent Tween 20, it was shown that the parameters of substrate binding and hemoprotein spin equilibrium did not differ from the corresponding parameters of the cytochrome-adrenodoxin dienzyme complex. The peculiarities of the multiligand interactions in the 11 beta-hydroxylase system, involving cytochrome, substrates and ferredoxin demonstrate some analogy with a bacterial camphor hydroxylase system and some differences from the mitochondrial system for the side chain cleavage of cholesterol.  相似文献   

6.
A cytochrome P-450, which is functional in the steroid methylene 11β-hydroxylation (P-45011β), has been purified to a protein weight of 85 kg per heme from bovine adrenocortical mitochondria. The purification is accomplished in the presence of deoxycorticosterone as a substrate stabilizer. The procedure involved solubilization of sonicated mitochondrial pellets, ammonium sulfate fractionation, alumina Cγ gel treatment and aniline-substituted Sepharose 4B chromatography.The purified preparation when freed from deoxycorticosterone, has a low spin type absorption spectrum which can rapidly be converted into a typical high spin substrate-bound form by the addition of an 11β-hydroxylatable steroid, either deoxycorticosterone or testosterone. The preparation exhibits high 11β-hydroxylase activity and is free from the cholesterol side-chain cleavage cytochrome P-450 (P-450scc).The purified P-45011β, when submitted to SDS-polyacrylamide gel electrophoresis, exhibits a single protein band (molecular weight of 46 kilodaltons) which is clearly distinguished from P-450scc. As determined by the sedimentation equilibrium method, the molecular weight of the guanidine-treated P-45011β is estimated to be 43 kilodaltons.  相似文献   

7.
The activity of purified bovine adrenocortical P-450(11)beta on the C18-steroid, 4-estrene-3,17-dione (19-norandrostenedione), is described. The major steroid products were separated by HPLC and identified by GC-MS, and 1H- and 13C-NMR as 11 beta-, 18- and 6 beta-hydroxylated derivatives of 19-norandrostenedione. The turnover numbers of the 11 beta-, 18- and 6 beta-hydroxylase reactions were 45, 7.5 and 1.9 (mol/min/mol of P-450(11)beta), respectively, with a common Km of 44 microM. All of these activities required the presence of the electron donating system consisting of NADPH, adrenal ferredoxin (adrenodoxin) and its reductase. These findings provide additional insights into the versatile catalytic roles of P-450(11)beta in the adrenal cortex, in which it may act on C18-19-nor-steroids in addition to its known activities on C21- and C19-steroids.  相似文献   

8.
Maturation of the precursor forms of bovine cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) and 11 beta-hydroxylase cytochrome P-450 (P-450(11)beta) was investigated using mitochondria from bovine corpus luteum. The results show that both precursors, whose synthesis was directed by bovine adrenocortical RNA, can be imported and proteolytically processed to their corresponding mature forms by bovine corpus luteal mitochondria, even though P-450(11)beta is not expressed in this tissue. Furthermore, the efficiency of processing of pre-P-450(11)beta by corpus luteal mitochondria is similar to that of pre-P-450SCC, an endogenous enzyme of these mitochondria. However, the P-450(11)beta precursor is not processed by mitochondria from a nonsteroidogenic tissue (heart), a result observed previously for the P-450SCC precursor (M. F. Matocha and M. R. Waterman (1984) J. Biol. Chem. 259, 8672-8678). This discriminatory processing of pre-P-450(11)beta by heterologous mitochondria suggests that the precursor forms of P-450SCC and P-450(11)beta are processed via a common pathway in steroidogenic mitochondria and that this pathway is absent in nonsteroidogenic mitochondria.  相似文献   

9.
The catalytic properties of the testis microsomal P-450, termed P-450sccII, have been studied in a refined assay system which consists of P-450sccII (13 nmol of P-450 heme/mg of protein) and its reductase has been purified extensively from pig testis. The results indicated that P-450sccII was highly active in catalyzing hydroxylation of 11 beta-hydroxyprogesterone at the 17 alpha-position to give 21-deoxycortisol and cleavage of 17 alpha-hydroxyprogesterone at the 17-20 bond to give androstenedione with turnover numbers of 25 and 30 mol/min X mol of P-450, respectively. In contrast, many physiologically important corticosteroids we tested were found to be poor substrates for both the hydroxylase and lyase reactions. The possible reason for the importance of these substrate specificity of P-450sccII in production of both corticosteroids and androgens in the endocrine tissues is discussed. P-450sccII also catalyzed conversion of testosterone to androstenedione, but 18O experiments failed to show incorporation of atmospheric oxygen into the androstenedione formed. However, this does not preclude the possibility that the P-450-bound intermediate gem-diol stereoselectively dehydrates to give the nonlabeled ketosteroid. In addition to these steroid-oxidizing activities, P-450sccII revealed considerable specificities toward various xenobiotics, suggesting that P-450sccII and liver microsomal P-450 are basically similar as regards enzymatic functions and activities.  相似文献   

10.
A new method for the removal of the stabilizing substrate, deoxycorticosterone, from adrenal cytochrome P-450(11) beta, has been developed. Dextran coated charcoal is used for the adsorption of the steroid and the adsorbed steroid is separated from the cytochrome P-450-preparation by low speed centrifugation. The substrate-free enzyme, obtained in this manner, has all the characteristic spectral properties of low-spin cytochrome P-450(11) beta and may be converted to the high-spin form by the addition of deoxycorticosterone. The dextran coated charcoal method has the following advantages over the previously used method of substrate removal. It does not require the addition of the cofactors for cytochrome P-450-dependant hydroxylation of deoxycorticosterone, small amounts of enzyme may be prepared in a short time and the enzyme preparation is not diluted to any great extent during the process.  相似文献   

11.
A bovine genomic library was constructed using a cosmid vector, pHC79, and bovine DNA partially digested by EcoRI. Bovine P-450(11 beta) cDNA, pcP-450(11 beta)-2 [Morohashi et al. (1987) J. Biochem. 102,559-568], was used as a probe for screening the genomic library. Ten clones carrying P-450(11 beta) genomic DNA were isolated from 8 x 10(4) colonies and classified into five groups (CB11 beta-1, CB11 beta-3, CB11 beta-7, CB11 beta-20, and CB11 beta-21) according to differences in the restriction endonuclease sites. Nucleotide sequences of amino acid coding regions of the five clones were determined by the dideoxy sequencing method using synthetic nucleotides corresponding to various parts of the cDNA as primers. The nucleotide sequences revealed that three clones, CB11 beta-1, CB11 beta-3, and CB11 beta-21, were pseudogenes. Amino acid sequences coded by the other two clones, CB11 beta-7 and CB11 beta-20, were identical with that coded by a previously described cDNA, pcP-450(11 beta)-3 [Kirita et al. (1988) J. Biochem. 104, 683-686]. The promoter regions of the five clones were introduced in front of chloramphenicol acetyltransferase (CAT) gene of pSV00CAT and used to examine P-450(11 beta) gene regulation in cultured cells. The five recombinant plasmids showed cAMP-responsive CAT activities in Y-1 cells, a cell strain derived from adrenal tumor. The induction rates of the recombinant plasmids carrying the promoters of normal genes, CB11 beta-7 and -20, were larger than those of pseudogenes, CB11 beta-1, -3, and -21. CAT activities expressed by the promoter regions of the normal genes in the presence or absence of cAMP in Y-1 cells were almost equal to that by the promoter region of human P-450(SCC) gene. Though the promoter of the P-450(SCC) gene also showed cAMP-responsive CAT activity in I-10 cells, a cell strain derived from Leyding cell tumor, P-450(11 beta) gene promoter did not express the activity in I-10 cells.  相似文献   

12.
Rabbit antibodies against cytochrome P-450 (SCC), P-450 (11 beta), and P-450 (C-21) from bovine adrenal cortex were prepared, and it was confirmed that these three cytochrome P-450 species are immunologically distinct from one another. Cytoplasmic sites of synthesis of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) in bovine adrenal cortex were determined by examining the presence of their nascent peptides on isolated free and bound ribosomes. Nascent peptides were released in vitro from ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) were isolated by immunoprecipitation. The nascent peptides of these three cytochrome P-450 species were found in both free and bound ribosomal fractions, suggesting that they share common sites of synthesis in the cytoplasm. However, the nascent peptides of mitochondrial P-450 (SCC) and P-450 (11 beta) were more concentrated in the free ribosomal fraction, whereas those of microsomal P-450 (C-21) were more abundant in the bound ribosomal fraction. The nascent peptides of the three cytochrome P-450 species were released from the membrane-bound ribosomes of rough microsomes into the cytoplasmic surface of microsomal vesicles by puromycin treatment.  相似文献   

13.
19-Oxoandrostenedione, the product of 19-hydroxyandrostenedione by the 19-oxidase activity of the purified P-450(11)beta system of adrenal cortex mitochondria, was further oxidized and demethylated at the 10-position to give the C18-steroids, estrone (aromatase reaction) and 19-norandrostenedione (nonaromatizing 10-demethylase or C10-19 lyase reaction). These reactions, together with the initial hydroxylation of androstenedione at C19, form a sequence of P-450(11)beta-catalyzed C19-steroid 19-monooxygenase reactions. P-450(11)beta is thus similar to placental endoplasmic P-450AROM in some of its substrate specificity, but the two forms of P-450 appear to be different in both physiology and properties.  相似文献   

14.
Incubation of 11-deoxycorticosterone with a cytochrome P-450(11)beta-reconstituted system yielded, in addition to corticosterone and 18-hydroxy-11-deoxycorticosterone, a new steroid product. The retention time of the new product was identical with that of authentic 19-hydroxy-11-deoxycorticosterone on high performance liquid chromatography (HPLC). The turnover number of 19-hydroxy-11-deoxycorticosterone formation was 7.0 mol/min/mol P-450. When a large amount of cytochrome P-450(11)beta was used for the reaction and the products were analyzed by HPLC, the 19-hydroxy-11-deoxycorticosterone peak disappeared from the chromatogram and concomitantly new unidentified peaks appeared. These results suggest that 19-hydroxy-11-deoxycorticosterone was further metabolized to other steroids by cytochrome P-450(11)beta. Therefore, we next incubated 19-hydroxy-11-deoxycorticosterone with cytochrome P-450(11)beta and analyzed the reaction products by HPLC. The above-mentioned unidentified peaks appeared again in the chromatogram. The retention time of one of the peaks coincided with that of authentic 19-oxo-11-deoxycorticosterone. This peak substance was purified by repeated HPLC and subjected to mass spectrometry and 1H NMR analyses. Its field desorption mass spectrum (FD-MS) showed a M+ peak at m/e 344. The 1H NMR spectrum showed the signal of an aldehyde proton instead of those of hydroxymethyl protons at the C-19 position. These results suggest that cytochrome P-450(11)beta can catalyze the 19-hydroxylation of 11-deoxycorticosterone, and the 19-hydroxy-11-deoxycorticosterone produced is further oxidized at the C-19 position to 19-oxo-11-deoxycorticosterone.  相似文献   

15.
Purified bovine adrenal P-450(11)beta has been shown to act as an aromatase which catalyzes conversion of 19-oxoandrostenedione to estrone. No conversions took place when any one of the required components such as NADPH, NADPH:adrenodoxin reductase, adrenodoxin and P-450(11)beta was omitted from the complete reconstituted system. P-450scc, another mitochondrial P-450 obtained from adrenal cortex, did not substitute for the P-450(11)beta in the aromatase reaction. These results show that P-450(11)beta is able to catalyze a series of reaction which can generate adrenal estrogen through androstenedione and its 19-hydroxy- and 19-oxo-derivatives. The P-450(11)beta-dependent reaction appears to be quite different from the placental aromatase reaction in that the latter is catalyzed by a microsomal P-450.  相似文献   

16.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

18.
The interactions of CYP11B1 (cytochrome P-45011beta), CYP11B2 (cytochrome P-450aldo) and CYP11A1 (cytochrome P-450scc) were investigated by cotransfection of their cDNA into COS-1 cells. The effect of CYP11A1 on CYP11B isozymes was examined by studying the conversion of 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone and aldosterone. It was shown that when human or bovine CYP11B1 and CYP11A1 were cotransfected they competed for the reducing equivalents from the limiting source contained in COS-1 cells; this resulted in a decrease of the CYP11B activities without changes in the product formation patterns. The competition of human CYP11A1 with human CYP11B1 and CYP11B2 could be diminished with excess expression of bovine adrenodoxin. However, the coexpression of bovine CYP11B1 and CYP11A1 in the presence of adrenodoxin resulted in a stimulation of 11beta-hydroxylation activity of CYP11B1 and in a decrease of the 18-hydroxycorticosterone and aldosterone formation. These results suggest that the interactions of CYP11A1 with CYP11B1 and CYP11B2 do not have an identical regulatory function in human and in bovine adrenal tissue.  相似文献   

19.
Using pcP-450(11 beta)-2 cDNA (Morohashi et al. (1987) J. Biochem. 102, 559-568) as the probe, a different cDNA clone, pcP-450(11 beta)-3, was isolated from a cDNA library of bovine adrenal cortex. The restriction enzyme map of pcP-450(11 beta)-3 was highly homologous but not identical with that of pcP-450(11 beta)-2. Nucleotide sequence determination revealed the substitutions of 14 nucleotides and 3 amino acids between pcP-450(11 beta)-2 and -3. Blotting analysis involving two different oligonucleotide probes specific to these two cDNAs indicated that at least two kinds of P-450(11 beta) mRNA were expressed in individual animals and that at least two kinds of P-450(11 beta) genes exist in the bovine genome.  相似文献   

20.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号