首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of the non-ionic surfactant, Pluronic F-68, on the growth of callus and protoplasts from Solanum dulcamara L. have been studied. Growth of callus was stimulated by addition of 0.1% (w/v) commercial grade Pluronic to culture medium, whereas lower concentrations (0.01% w/v) had no corresponding effect. In contrast, higher concentrations (1.0% w/v) of Pluronic inhibited callus growth. The mean plating efficiency of protoplasts grown at different densities (15 days after plating) was increased up to 26% following culture with 0.1% (w/v) Pluronic, while 0.01% (w/v) Pluronic was ineffective. Mean protoplast plating efficiency decreased by up to 32% following culture with 1.0% (w/v) Pluronic.  相似文献   

2.
Pluronic F-68 has been widely used to protect animal cells from hydrodynamic stress, but its mechanism of action is still debatable. Published evidence indicates that Pluronic F-68 interacts with cells, yet scarce information exists of its effect on recombinant protein and virus production by insect cells. In this work, the effect of Pluronic F-68 on production of recombinant baculovirus and rotavirus protein VP7 was determined. Evidence of Pluronic F-68 direct interaction with Sf-9 insect cells also was obtained. Maximum recombinant VP7 concentration and yield increased 10x, whereas virus production decreased by 20x, in spinner flask cultures with 0.05% (w/v) Pluronic F-68 compared to controls lacking the additive. No differences were observed in media rheology, nor kinetics of growth and infection (as inferred from cell size) between both cultures. Hence, Pluronic F-68 influenced cell physiology independently of its shear protective effect. Cells subjected to a laminar shear rate of 3000 s(-1) for 15 min, without gas/liquid interfaces, were protected by Pluronic F-68 even after its removal from culture medium. Furthermore, the protective action was immediate in vortexed cells. The results shown here indicate that Pluronic F-68 physically interacts with cells in a direct, strong, and stable mode, not only protecting them from hydrodynamic damage, but also modifying their capacity for recombinant protein and virus production.  相似文献   

3.
The effects of the non-ionic surfactant, Pluronic F-68, on the growth of shoots regenerated from seedlings (14 days post-germination) of Hypericum perforatum L. were studied. The supplementation of agar-solidified medium with 0.001% (w/v) of Pluronic increased the mean fresh weight of the regenerants after 60 days by 40% and the mean number of plant regenerants recovered per seedling by 34%; a less pronounced increase in the number of regenerants occurred with 0.01% (w/v) of the surfactant. By contrast, the mean fresh weight of the regenerants cultured in the presence of 0.1% (w/v) Pluronic F-68 was 15% lower than untreated controls, although the mean number of regenerants per seedling remained unaltered. The growth of seedling leaf-derived Hypericum callus after 60 days was unaffected by all the concentrations of Pluronic tested. However, there was a tendency for callus cells grown in the presence of Pluronic to be more highly pigmented with anthocyanins. The cultivation of leaf explants with 0.001% or 0.01% (w/v) Pluronic did not affect either the mean fresh weight of the regenerants or the mean number of regenerants per explant. However, decreases in both the mean fresh weight and the mean number of regenerants (both 33.0% lower than the control) occurred following the cultivation with 0.1% (w/v) Pluronic.  相似文献   

4.
The effects have been studied of the non-ionic surfactant, PluronicF-68, on the growth of transformed roots, callus and protoplastsof Solanum dulcamara L. Root growth was stimulated by additionof 0001–005% (w/v) of freshly-prepared, commercial gradePluronic to culture medium, with maximum increases in root freshand dry weights at 001%. Higher concentrations (05–10%w/v) of freshly-prepared Pluronic inhibited growth. A Pluronicfraction, prepared by passage through silica-Amberlite resin,retarded root growth even at concentrations that were stimulatorywith the commercial preparation. Similarly, commercial gradePluronic solutions stored at 4C or 22C for 5 d (‘aged’)also inhibited root growth. Roots grew faster on Pluronic F-68-treatedmembrane rafts compared with growth on commercially-availablerafts; such growth enhancement was comparable to that seen inmedium supplemented with 001% (w/v) freshly-prepared commercialPluronic. Callus growth was also stimulated by the addition of freshly-prepared,commercial grade Pluronic F-68 to medium, with maximum increasesat 01% (w/v); in contrast, 10% (w/v) Pluronic was inhibitoryto callus growth. The mean plating efficiency (15 d after plating)of protoplasts cultured at densities of 01–20105 cm–3was increased up to 26% by 01% (w/v) Pluronic, while 10% wasinhibitory. Both root and callus soluble carbohydrates and proteinswere increased by exposure to freshly-prepared, commercial Pluronic.Similarly, the specific activities of malate dehydrogenase andacid phosphatase were increased in Pluronic F-68-treated callusand roots. The biotechnological implications of these resultsare discussed in relation to the potential value of non-ionicsurfactants as growth-stimulating additives to plant culturemedia. Key words: Solanum dulcamara, Pluronic F-68, surfactant, transformed roots, callus, protoplasts, malate dehydrogenase, acid phosphatase  相似文献   

5.
A flow chamber was used to impart a steady laminar shear stress on a recombinant Chinese hamster ovary (CHO) cell line expressing human growth hormone (hGH). The cells were subjected to shear stress ranging from 0.005 to 0.80 N m(-2). The effect of shear stress on the cell specific glucose uptake, cell specific hGH, and lactate productivity rates were calculated. No morphological changes to the cells were observed over the range of shear stresses examined. When the cells were subjected to 0.10 N m(-2) shear in protein-free media without Pluronic F-68, recombinant protein production ceased with no change in cell morphology, whereas control cultures were expressing hGH at 0.35 microg/10(6 )cells/h. Upon addition of the shear protectants, Pluronic F-68 (0.2% [w/v]) or fetal bovine serum (1.0% [v/v] FBS), the productivity of the cells was restored. The effect of increasing shear stress on the cells in protein-free medium containing Pluronic F-68 was also investigated. Cell specific metabolic rates were calculated for cells under shear stress and for no-shear control cultures performed in parallel, with shear stress rates expressed as a percentage of those obtained for control cultures. Upon increasing shear from 0.005 to 0.80 N m(-2), the cell specific hGH productivity decreased from 100% at 0.005 N m(-2) to 49% at 0.80 N m(-2) relative to the no-shear control. A concurrent increase in the glucose uptake rate from 115% at 0.01 N m(-2) to 142% at 0.80 N m(-2), and decreased lactate productivity from 92% to 50%, revealed a change in the yield of products from glucose compared with the static control. It was shown that shear stress, at sublytic levels in medium containing Pluronic F-68, could decrease hGH specific productivity.  相似文献   

6.
Pluronic F-68 is a widely used protective agent in sparged animal cell bioreactors. In this study, the attachment-independent Spodoptera frugiperda Sf9 insect cell line was used to explore the mechanism of this protective effect and the nature of cell damage in sparged bioreactors. First, bubble incorporation via cavitation or vortexing was induced by increasing the agitation rate in a surface-aerated bioreactor; insect cells were rapidly killed under these conditions of the absence of polyols. Supplementing the medium with 0.2% (w/v) Pluronic F-68, however, fully protected the cells. Next, cell growth was compared in two airlift bioreactors with similar geometry but different sparger design; one of these bioreactors consisted of a thin membrane distributor, while the other consisted of a porous stainless steel distributor. The flow rates and bubble sizes were comparable in the two bioreactors. Supplementing the medium with 0.2% (w/v) Pluronic F-68 provided full protection to cells growing in the bioreactor with the membrane distributor but provided essentially no protection in the bioreactor with the stainless steel distributor. These results strongly suggest that cell damage can occur in the vicinity of the gas distributor. In addition, these results demonstrate that bubble size and gas flow rate are not the only important considerations of cell damage in sparged bioreactors. A model of cell death in sparged bioreactors is presented.  相似文献   

7.
The effects have been studied of the non-ionic surfactant, Pluronic F-68, on the growth in culture of jute (Corchorus capsularis L.) cotyledons with attached petioles, cotyledon explants and transformed roots. Supplementation of culture medium with 0.001–0.5% (w/v) of either commercial grade Pluronic F-68 or a purified fraction prepared by passage through silica gel, stimulated shoot production from the petioles of C. capsularis var. D154 and C134 cotyledons. This effect was most marked in C134, because of the failure of control cotyledons to produce shoots in the absence of Pluronic. Plants regenerated from Pluronic-treated cotyledons were morphologically normal. Growth of transformed roots of C. capsularis var. D154 was stimulated in medium supplemented with commercial grade or purified Pluronic F-68, with maximum increases in both fresh and dry weights with 0.1% (w/v) of the surfactant. Roots cultured in the presence of Pluronic F-68 could be maintained without sub-culture for up to 70 days, whereas roots cultured in the absence of Pluronic required subculture every 7 days, to prevent necrosis. Transformed roots also produced callus in the presence of 0.001–1.0% (w/v) of either commercial grade or purified Pluronic. The biotechnological implications of these results are discussed in relation to the potential value of non-ionic surfactants as growth-stimulating additives to plant culture media.Abbreviations NAA -naphthaleneacetic acid - BA 6-benzyladenine - IAA indole-3-acetic acid - MS Murashige & Skoog (1962)  相似文献   

8.
The effects of the non-ionic surfactant Pluronic F-68 (0.01% w/v) on Tetrahymena cells have been studied. A marked protection against chemical and physical stress was observed. The chemical stress effects were studied in cells suspended in buffer (starvation) or in buffers with added ingredients from a chemically defined medium (Ca2+, Mg2+, Na+, K+, trace metal ions). The physical stress was due to mechanical stress or hyperthermia. The data show that Pluronic: (a) prolongs the survival of low concentration cell suspensions during starvation; (b) prevents the cell death caused by low concentrations of Ca2+ (70 microM); (c) prolongs the survival of cells exposed to higher ion concentrations (10 mM Ca2+, or Na+ or K+); (d) postpones the death caused by trace metal ions like Zn2+, Fe3+ and, Cu2+; (e) protects cells from the death caused by shearing forces; and (f) prolongs the survival of cells exposed to hyperthermia (43 degrees C). The cellular survival is increased at reduced temperatures (e.g. 4 degrees C instead of 36 degrees C) and at increased cellular concentrations (e.g. 100 cells ml(-1) instead of 25 or 10 cells ml(-1)). There is no effect of pre-incubation with Pluronic. The protective effect of Pluronic towards Tetrahymena is observed for concentrations in the range from 0.001 to 0.1% w/v.  相似文献   

9.
Summary Cell suspension-derived protoplasts of albino Petunia hybrida were grown for 10 d at the interface between aqueous culture medium (KM8P) and an oxygenated (10 mbar for 15 min) perfluorocarbon liquid, perfluorodecalin. Protoplasts synthesised new cell walls and divided normally at the perfluorodecalin/culture medium interface, with a mean viability after 10 d of > 92.0%. The mean plating efficiency of protoplasts was elevated by 37% (P<0.05) following culture at the perfluorodecalin/medium interface, but was unaltered by perfluorodecalin or oxygen separately. The mean plating efficiency of protoplasts cultured at the interface was further increased to a maximium of 52% above control, in the presence of oxygenated perfluorodecalin and KM8P medium supplemented with the non-ionic, co-polymer surfactant, Pluronic F-68 at 0.01% (w/v). These findings demonstrate the effectiveness of oxygenated perfluorodecalin for promoting protoplast growth, by facilitating oxygen delivery. The finding that Pluronic F-68 further increased the plating efficiency of protoplasts cultured at the perfluorocarbon/aqueous interface suggests that these agents improve growth through separate, but cumulative, mechanisms.Abbreviations ATP adenosine triphosphate - PFCs perfluorochemicals - STP standard temperature and pressure  相似文献   

10.
Foam formation and the subsequent cell damage/losses in the foam layer were found to be the major problems affecting cell growth and monoclonal antibody (MAb) production in stirred and sparged bioreactors for both serum-supplemented and serum-free media. Surfactants in the culture media had a profound effect on cell growth by changing both the properties of bubbles and the qualities of foam formed. Comparable cell growth and MAb production in sparged bioreactors and in stirred and surface-aerated control cultures were observed only in Pluronic F-68 containing culture media. In media devoid of Pluronic F-68, cells became more sensitive to direct bubble aeration in the presence of antifoam agent which was used to suppress foam formation. Compared with serum-supplemented medium, more severe cell damage effects were observed in serum-free medium. In addition, serum-free medium devoid of cells was partially degraded under continuous air sparging. The mechanism of this damage effect was not clear. Pluronic F-68 provided protective effect to cells but not to the medium. A theoretical model based on the surface active properties of Pluronic F-68 was proposed to account for its protective effect on cell growth. Optimum media surfactant composition in terms of maximum cell growth and minimum foam formation was proposed for stirred and sparged animal cell bioreactor.  相似文献   

11.
Summary The effects of the non-ionic surfactant, Pluronic F-68, on growth and structure ofSolanum dulcamara cells in suspension culture have been studied. Growth of cells, as measured by dry weight, was unaffected by low concentrations (0.01–1.0% w/v) of pluronic, while culture with higher concentrations (2.5–10.0%) resulted in cell death. It is suggested that low concentrations of pluronic may be valuable supplements in plant cell cultures to protect against mechanical damage and to manipulate membrane systems.  相似文献   

12.
ABSTRACT We have previously shown that the cell death of Tetrahymena thermophila in low inocula cultures in a chemically-defined medium is not apoptotic. The death is caused by a cell lysis occurring at the medium-air interface and can be prevented by the addition of insulin or Pluronic F-68. Here, we report that cell death can also be caused by the medium. The specific effects of several medium constituents were tested in the presence and absence of an interface. Four of the 19 amino acids (arginine, aspartic acid, glutamic acid, and histidine in millimolar concentration) as well as Ca2+ (68 μM) and Mg2+ (2 mM) and trace metal ions (micromolar concentrations) are all sufficient to induce the interface-mediated death. The effect of the amino acids and the salt ions Ca2+ and Mg2+ can be abolished by the addition of insulin (10-6 M) or Pluronic F-68 (0.01% w/v), whereas insulin/Pluronic F-68 only postpones the death induced by trace metal ions. On the basis of our findings, a new recipe for a chemically-defined medium has been formulated. Single cells can grow in this medium in the presence of medium-air interface without any supplements.  相似文献   

13.
The surfactant Pluronic F-68 (PF-68) is widely used in large-scale mammalian cell culture to protect cells from shear stress that arises from agitation and gas sparging. Several studies suggested that PF-68 is incorporated into the cell plasma membrane and could enter the cells, but without providing any direct evidence. The current study has examined this question for two cell types, one of pharmaceutical interest (CHO cells) and the other of biomedical interest (chondrocytes or cartilage cells). A fluorescent derivative of PF-68 was synthesized to detect and localize internalized Pluronic with culture time. PF-68 uptake by the cells was quantified and characterized. We clearly demonstrate that PF-68 enters the cells, and possibly accumulates in the endocytic pathway. CHO cells showed an average uptake of 11.7 +/- 6.7 (SEM) microg PF-68/10(6) cells while the uptake of chondrocytes was 56.0 +/- 10.9 (SEM) microg PF-68/10(6) cells, independently of the initial PF-68 concentration (between 0.01 and 0.2%, w/v) and of cell concentration (from 1 x 10(6) to 4 x 10(6) cells/mL). These uptake values were identical for both static and agitated culture conditions. Finally, we found that CHO cells are able to eliminate intracellular fluorescent PF-68 but chondrocytes are not. These results show that the uptake of PF-68 by the cells can severely affect PF-68 concentration in the culture medium and thus shear protection effect.  相似文献   

14.
The relative sensitivity of two insect cell lines to laminar shear stress was determined, and the protective effect of polymers added to the growth media of two insect cell lines, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), was evaluated. TN-368 and SF-9 cells were found to be equally sensitive to laminar shear stress. Methylcellulose [0.5% (w/v) Dow E4M Methocel] and dextran [4.5% (w/v)] increased the resistance of suspended cells to lysis due to laminar shear stress by factors of up to 76 and 28, respectively, compared to cells in media without additives. It was observed that the protective effect of Pluronic F-68 was concentration-dependent: 0.2% and 0.3% (w/v) F-68 increased the resistance of SF-9 cells to shear stress by factors of 15 and 42, respectively. However, increasing the concentration to 0.5% did not significantly increase the cells' resistance compared to 0.3% (w/v). F-68 at 0.2% only increased the resistance of TN-368 cells by a factor of 6. It is believed that the protection is a result of the polymer adsorbing to the cell membrane. None of the polymer additives tested had a significant effect on SF-9 or TN-368 growth rate.  相似文献   

15.
Summary Five mouse-human hybridomas, H2, H3, V1, V2 and V6 cells secreting anti-virus human monoclonal immunoglobulin G (IgG) were cultured in serum-free media at high density in a settling perfusion culture vessel with an inner cell sedimentation zone. The H2, H3 and V6 cells reached a density of 107 cells/ml in 0.5% (w/v) BSA-ITES-eRDF (see Materials and methods). The H2 cells reached only 6.8 × 106 cells/ml in the absence of bovine serum albumin (BSA), but the addition of 0.2% (w/v) Pluronic F68 increased the maximum cell density to 1.1 × 107 cells/ml, which was the same level as in BSA including medium. On the other hand, Pluronic F68 showed no stimulative effect on the growth of H2 cells in static culture. Pluronic F68 also increased the maximum cell density of V2 cells from 4.6 × 106 cells/ml to 6.9 × 106 cells/ml even in the presence of 0.5% (w/v) BSA.  相似文献   

16.
Summary The effects have been studied of the non-ionic surfactants, Plutonic F-68, Tween 20 or Triton X-100, on shoot regeneration from cultured jute (Corchorus capsularis L.) cotyledons with attached petioles. This group of non-ionic surfactants was selected in order to determine a possible relationship between the physico-chemical properties of individual compounds and their observable effects on plant morphogenesis in cultured jute cotyledons. Supplementation of culture medium with 0.001–0.5% (w/v) Pluronic F-68 increased the mean percentage of cotyledons producing shoots and the mean number of shoots/cotyledon, with maximal responses at 0.5% (w/v). By contrast, Tween 20 produced maximal effects at 0.001% (v/v), with inhibition of shoot formation at 0.5% (v/v). In both cases, phenotypically normal plants were recovered which could be grown to maturity. Culture of cotyledons with 0.001% (v/v) Triton X-100 similarly increased both the percentage of cotyledons producing shoots and the number of shoots/cotyledon. However, these shoots did not develop into mature plants. Additionally, shoots did not regenerate from cotyledons cultured with Triton at 0.01–0.5% (v/v). These results demonstrate mat there is an apparent relationship between the hydrophilic-hydrophobic (HLB) balance of surfactants which determine their cell permeabilising properties and consequently, their effects on morphogenesis.Abbreviations BAP 6-benzylaminopurine - IAA indole-3-acetic acid - MS Murashige and Skoog (1962)  相似文献   

17.
Summary The effects of the non-ionic surfactant, Pluronic F-68, on the growth of transformed roots ofSolanum dulcamara L. have been studied. Growth was stimulated by addition of low concentrations (0.001–0.1% w/v) of freshly-prepared commercial grade Pluronic to liquid culture medium, with maximum increases in root fresh and dry weights at 0.01% (w/v). In contrast, higher concentrations (0.25–1.00% w/v) of freshly-prepared Pluronic inhibited growth. Freshly-prepared purified Pluronic retarded root growth, even at concentrations that were stimulatory with the commercial preparation. Similarly, commercial grade Pluronic solutions stored at 4°C or 22°C for 5 days (aged) were inhibitory to root growth.  相似文献   

18.
Image analysis has been used to assess the growth of cell suspension-derived protoplasts of Petunia hybrida cv. Comanche at an interface between aqueous culture medium (KM8P), supplemented with 0.01% (w/v) Pluronic F-68, and oxygenated (10 mbar; 10 min) perfluorodecalin. Protoplasts synthesised a new cell wall and entered normal mitotic division which was sustainable to the cell colony/callus stage. This process was accentuated by the collective and additive effects of oxygen, perfluorodecalin and surfactant media supplements. The mean area (mm3) of protoplast-derived cell colonies after 68 days of growth was increased 35 fold over control (media alone) in the presence of these combined treatments. The new cultural regime, leading to improved cell throughput from protoplasts, is discussed primarily in relation to the role of perfluorodecalin as a gas carrier and possible effects of Pluronic F-68 in stimulating cellular uptake of nutrients and/or growth regulators. Image analysis provides a novel and accurate approach to quantifying cell growth responses.Abbreviations dpi dots per inch - FPE final plating efficiency - IPE initial plating efficiency - KM Kao & Michayluk (1975) - PFC Perfluorocarbon - UM Uchimiya & Murashige (1974)  相似文献   

19.
Summary The effects of a non-ionic surfactant, Pluronic F-68, on growth of chick embryonic fibroblasts and hamster melanoma cellsin vitro have been studied. Low concentrations (0.05–0.1% w/v) of commercial grade Pluronic stimulated growth of both cell types whereas low concentrations of purified Pluronic inhibited fibroblast growth but strongly stimulated growth of melanoma cells. These observations suggest that Pluronic may have value for regulating growth of cell cultures.  相似文献   

20.
Recalcitrance to tissue culture is observed in some genotypes of Brassica napus. Several studies have confirmed that Pluronic F-68 has growth-promoting effects on numerous tissue types. This work investigated the effect of the non-ionic surfactant Pluronic F-68 at four concentrations (0.1%, 0.25%, 0.5%, and 1% (w/v)) on the responsiveness of recalcitrant B. napus lines to tissue culture. Microspores from seven populations of B. napus were cultured on Nitsch and Nitsch medium with this compound. The embryos obtained were plated on solid B5 medium supplemented with zeatin for shoot induction. Pluronic F-68 had a highly significant effect on the proportion of shoot regeneration (P < 0.05) in some of the recalcitrant populations. However, no strong dose–response effect was observed. The estimated probability of a shoot occurring in the absence of Pluronic F-68 ranged from 0.04 to 0.31 depending on the genotype, while in the presence of Pluronic F-68, it ranged from 0.07 to 0.53, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号