共查询到20条相似文献,搜索用时 0 毫秒
1.
B Hagenbuch H Lübbert B Stieger P J Meier 《The Journal of biological chemistry》1990,265(10):5357-5360
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system. 相似文献
2.
K. Hager A. Hazama H. M. Kwon D. D. F. Loo J. S. Handler E. M. Wright 《The Journal of membrane biology》1995,143(2):103-113
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V
m
), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K
0.5
MI
, K
0.5
Na
, and the Hill coefficient n. At 100 mM NaCl, K
0.5
MI
was about 50 m and was independent of V
m
. At 0.5 mm
myo-inositol, K
0.5
Na
ranged from 76 mm at V
m
=–50 mV to 40 mm at V
m
=–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K
I
of 64 m at V
m
=–50 mV and 130 m at V
m
= –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V
m
=–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V
m
=–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V
m
. The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model.
Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812
Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554. 相似文献
3.
Cordyceps, an entomopathogenic fungus, contains many health-promoting ingredients. Recent reports indicate that the consumption of cordyceps helps reduce blood-sugar content in diabetics. However, the mechanism underlying this reduction in circulatory sugar content is not fully understood. Methanolic extracts were prepared from the fruiting bodies of Paecilomyces tenuipes, and 4-beta acetoxyscirpendiol (4-ASD) was eventually isolated and purified. Na(+)/Glucose transporter-1 (SGLT-1) was expressed in Xenopus oocytes, and the effect of 4-ASD on SGLT-1 was analyzed utilizing a voltage clamp and by performing 2-deoxy-D-glucose (2-DOG) uptake studies. 4-ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose-dependent manner. In the presence of the derivatives of 4-ASD (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited in an 4-ASD-like manner. Of these derivatives, 15-acetoxyscirepenol inhibited SGLT-1 as well as 4-ASD, whereas diacetoxyscirpenol was slightly less effective. Taken together, these results strongly indicate that 4-ASD in P. tenuipes may lower blood sugar levels in the circulatory system. We conclude that 4-ASD and its derivatives are effective SGLT-1 inhibitors. 相似文献
4.
We have successfully expressed a bacterial cotransporter in a functional form in the Xenopus laevis oocyte expression system. The goals were to compare the kinetics and selectivity of the cotransporter expressed in oocytes with those obtained in bacteria and in proteoliposomes, and to determine if it is possible to measure the electrical properties of the bacterial cotransporter expressed in oocytes. The Vibrio parahaemolyticus Na+/galactose cotransporter (vSGLT) expressed in oocytes has functional properties that are similar to those expressed in bacteria and those of the purified cotransporter reconstituted into liposomes. vSGLT is a Na+-dependent transporter that is saturable with Na+ (K(0.5)=17 mM) and D-galactose (K(0.5)=237 microM) and is sensitive to both D-fucose and phlorizin. In addition, vSGLT in oocytes shows a sugar specificity in the order of D-galactose >D-fucose > D-glucose, distinguishing it from the animal members of the Na+/glucose cotransporter family. The level of transport by vSGLT in oocytes is lower overall (V(max) approximately 10 pmol/oocyte/hour) compared to other plant and animal cotransporters (V(max) approximately 1000 pmol/oocyte/hour). The low level of expression does not permit us to carry out electrophysiological studies of the bacterial cotransporter. This study shows the potential and unique advantages of utilizing a eukaryotic oocyte expression system to study bacterial cotransporters. 相似文献
5.
Biosynthesis of the cloned intestinal Na+/glucose cotransporter 总被引:1,自引:0,他引:1
6.
Proline absorption across small intestine takes place mainly through a Na+-dependent cotransporter localized at the brush border membrane of the enterocyte named IMINO system. It transports L-proline and 4-OH-proline but not L-alanine, neither cationic nor anionic amino acids. The present work demonstrates the functional expression of this transporter in Xenopus laevis oocytes by mRNA microinjection and radiotracer uptake techniques. Poly (A)+-RNA was isolated from rabbit jejunal mucosa and injected into oocytes. Five days after the injection, results showed 1.5 fold stimulation of 50 microM 3H-proline uptake by the injected oocytes when compared to the non injected oocytes uptake. Poly (A)+-RNA was sized fractionated and fractions were injected again. Increase on Na+-dependent L-proline uptake was obtained with a mRNA fraction between 2,4 and 4,4 kb, which was used to construct a cDNA library. The library was sequentially divided and cRNAs injected into oocytes in order to screen for an increment on the signal. A subdivision containing around 2,000 colonies was found to augment L-proline uptake 25 fold over the non injected oocytes uptake. This cRNA pool was used to further characterize the transporter. Results showed that in the absence of Na+ there was no L-proline uptake, 2 mM 4-OH-L-proline completely inhibited 50 microM proline uptake and there was no 50 microM alanine uptake. In summary, these results demonstrate the expression of the rabbit small intestine IMINO transporter in Xenopus laevis oocytes and support the next steps in the isolation of the clone. 相似文献
7.
D S Krafte A L Goldin V J Auld R J Dunn N Davidson H A Lester 《The Journal of general physiology》1990,96(4):689-706
This study investigates the inactivation properties of Na channels expressed in Xenopus oocytes from two rat IIA Na channel cDNA clones differing by a single amino acid residue. Although the two cDNAs encode Na channels with substantially different activation properties (Auld, V. J., A. L. Goldin, D. S. Krafte, J. Marshall, J. M. Dunn, W. A. Catterall, H. A. Lester, N. Davidson, and R. J. Dunn. 1988. Neuron. 1:449-461), their inactivation properties resemble each other strongly but differ markedly from channels induced by poly(A+) rat brain RNA. Rat IIA currents inactivate more slowly, recover from inactivation more slowly, and display a steady-state voltage dependence that is shifted to more positive potentials. The macroscopic inactivation process for poly(A+) Na channels is defined by a single exponential time course; that for rat IIA channels displays two exponential components. At the single-channel level these differences in inactivation occur because rat IIA channels reopen several times during a depolarizing pulse; poly(A+) channels do not. Repetitive stimulation (greater than 1 Hz) produces a marked decrement in the rat IIA peak current and changes the waveform of the currents. When low molecular weight RNA is coinjected with rat IIA RNA, these inactivation properties are restored to those that characterize poly(A+) channels. Slow inactivation is similar for rat IIA and poly(A+) channels, however. The data suggest that activation and inactivation involve at least partially distinct regions of the channel protein. 相似文献
8.
9.
The intestinal Na+/glucose cotransporter was isolated from brush border membrane vesicles using a three-step procedure and Na(+)-dependent phlorizin binding as the measure of cotransporter enrichment. The initial step was to treat the Ca2(+)-precipitated brush border membrane vesicles with 0.02% sodium dodecyl sulfate (SDS) followed by sucrose gradient centrifugation which resulted in a 5-fold enrichment of the Na+/glucose cotransporter. The second step was chromatofocusing chromatography over the pH range from pH 7.4 to pH 4.0. This step resulted in an additional 20-fold purification as compared with the SDS-brush border membrane vesicle protein which served as the starting material. The final step was affinity chromatography on con A-Sepharose which resulted in a 5-fold enrichment of the chromatofocused protein. The glycoprotein fraction from the concanavalin A column reconstituted into phosphatidyl choline: cholesterol liposomes demonstrated Na(+)-dependent, phlorizin-sensitive, and osmotic strength-sensitive glucose uptake. This fraction consisted of a single 75-kDa polypeptide on SDS-polyacrylamide gel electrophoresis upon staining with silver. On the basis of these criteria it appears that a protocol for the isolation of the Na+/glucose cotransporter has been developed. 相似文献
10.
We have used baculovirus (AcNPV) to express the Na+/glucose cotransporter protein in cultured Sf9 cells. We constructed a baculovirus transfer vector containing the cDNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) under the control of the polyhedrin gene promoter. Recombinant baculovirus was obtained by cotransfection of SF9 cells with wild-type AcNPV DNA and the transfer vector. Recombinant virus was identified by Southern blotting and then purified. Recombinant infected Sf9 cells expressed a protein which was recognized by anti-peptide antibodies raised to sequences of the cloned Na+/glucose cotransporter. This protein migrated with a molecular mass of 55 kD by SDS-PAGE, similar to the in vitro translation product of SGLT1. An identical protein was metabolically labeled with [35S]methionine. Cells which synthesized the transport protein showed Na(+)-dependent alpha MeGlc transport. Micromolar phlorizin inhibited transport. Uninfected and wild-type virus infected Sf9 cells did not have Na(+)-dependent glucose transport. All transport protein migrated at 45% sucrose (w/w) by density gradient sedimentation, suggesting that the expressed transporter is membrane associated. We conclude that we have functionally expressed the rabbit intestinal Na+/glucose cotransporter in Sf9 cells. The transporter is not heavily glycosylated, and this is consistent with previous work showing that glycosylation is not necessary for function. We are poised to purify and characterize this protein from a structure-function perspective. 相似文献
11.
B E Peerce 《The Journal of biological chemistry》1990,265(3):1737-1741
Conformations of the Na+/glucose cotransporter were examined using tryptophan fluorescence and substrates to induce cotransporter conformational changes. Addition of Na+ but not K+ or TMA+ resulted in a saturable quenching of tryptophan fluorescence with a K0.5 for Na+ of 28 mM. In the presence of saturating Na+ concentrations, d-glucose but not l-glucose, fructose, or phlorizin resulted in a partial return of tryptophan fluorescence to approximately 70% of the substrate-free levels. This return of tryptophan fluorescence was a saturable function of d-glucose concentration with a K0.5 of 43 microM. The three conformations were compared with respect to their sensitivity to tryptophan quench reagents. Acrylamide quenching was unaffected by substrates. In contrast, I- quenching decreased 40% in the presence of Na+, while Cs+ quenching increased 64%. Addition of saturating d-glucose concentrations resulted in the return of I- quenching to 90% of the substrate-free values and reduced Cs+ quenching to substrate-free levels. In contrast, phlorizin did not mimic the effect of d-glucose on tryptophan fluorescence. These results are interpreted in terms of a second substrate-induced cotransporter conformational change which based on similar substrate specificities appears directly related to cotransporter-mediated Na+ and d-glucose transport. 相似文献
12.
Y Fujii M Kaizuka F Hashida J Maruo E Sato H Yasuda T Kurokawa S Ishibashi 《Biochimica et biophysica acta》1991,1063(1):90-94
In order to examine the involvement of insulin in the activity of Na+/glucose cotransporter in rat small intestine, we compared Na(+)-dependent uptake of D-glucose by brush-border membrane vesicles prepared from control, streptozotocin-induced diabetic, insulin-treated diabetic and starved diabetic rats. In four groups, the uptake of D-glucose showed a transient overshoot in the presence of Na+ gradient between medium and vesicles (medium greater than vesicles). The overshoot magnitude was increased (1.8-fold of controls) in diabetic brush border membrane vesicles and recovered to the control level by the treatment of diabetic rats with insulin. In contrast, increased uptake of D-glucose in diabetic rats was not recovered by the starvation of diabetic rats although the blood glucose level was the same as that of controls. Furthermore, we attempted to examine phlorizin binding activities among four groups. Scatchard analysis indicated that phlorizin binding to diabetic brush border membrane vesicles was increased (1.6-fold of controls) without a change of the affinity for phlorizin as compared with controls. Increased binding of phlorizin to diabetic brush border membrane vesicles was also recovered to the control level by the treatment of diabetic rats with insulin, but not by starvation. These results suggested that the increased activity of Na+/glucose cotransporter in diabetic rats was due to the increase of the number of cotransporter and that intestinal cotransporter was physiologically controlled by insulin, but not by blood glucose levels. 相似文献
13.
Current generated by the electrogenic Na+/K+ pump protein was determined in oocytes of Xenopus laevis as strophantidine-sensitive current measured under voltage clamp. Under conditions of reduced intracellular [Na+] and [ATP], both to values below 1 mM, and in extracellularly K(+)-free medium, the Na+/K+ pump seems to operate in a reversed mode pumping Na+ into the cell and K+ out of the cell. This is demonstrated by strophantidine-induced hyperpolarization of the membrane and inward-directed current mediated by the pump protein. In addition, strophantidine-sensitive uptake of 22Na+ can be demonstrated under these conditions. The pump current decreases with membrane depolarization as expected for a pump cycle that involves inward movement of positive charges during Na+ translocation. 相似文献
14.
Activity of the Na+/glucose cotransporter endogenously expressed in LLC-PK1 cells was measured using whole cell recording techniques under three different sodium concentration conditions: 1) externally saturating, zero trans; 2) 40 mM external, zero trans; and 3) externally saturating, 50 mM trans. Activity of the transporter with increasing concentrations of sugar was measured for each set of conditions, from which the maximal current for saturating sugar, Im, was determined. The Im measured shows substantial potential dependence for each set of conditions. The absolute Im and the relative potential dependence of Im compared among the various solute conditions were used to identify which loci in the transport cycle are responsible for potential-dependent changes in function. The experimental data were compared with the predicted Im values calculated from an eight-state, sequential, reversible model of a transport reaction kinetic scheme. Predictions derived from assignment of rate limitation and/or potential dependence to each of the 16 transitions in the transport pathway were derived and compared with the measured data. Most putative models were dismissed because of lack of agreement with the measured data, indicating that several steps along the transport pathway are not rate limiting and/or not potential dependent. Only two models were found that can completely account for the measured data. In one case, translocation of the free carrier must be rate limiting, and both extracellular sodium-binding events as well as translocation of both free and fully loaded carrier forms must be potential-dependent transitions. In the second case, translocation of the free carrier and dissociation of the first sodium to be released intracellularly must be equivalently rate limiting. In this case only the two translocation events are required to be potential dependent. The two external sodium-binding events might still be potential dependent, but this is not required to fit the data. Previous reports suggest that the first model is correct; however, no direct experimental data compel us to dismiss the second option as a feasible model. 相似文献
15.
The Na(+) and voltage-dependence of transient rabbit Na(+)/glucose cotransporter (rSGLT1) kinetics was studied with the two-electrode voltage-clamp technique and Xenopus laevis oocytes. Using step changes in membrane potential, in the absence of glucose but with 100 or 10 mM Na(+), transient currents were measured corresponding to binding/debinding of Na(+) and conformational changes of the protein. Previously, only a single time constant has been published for rSGLT1. We, however, observed three decay components; a fast (tau(f), 0.5-1 ms) voltage- and Na(+)-independent decay, and medium (tau(m), 0.5-4 ms) and slow (tau(s), 8-50 ms) voltage- and Na(+)-dependent decays. Transient currents were simulated and fit using a four-state model to obtain kinetic parameters for the system. The four-state model was able to reconstitute an assortment of experimental data. 相似文献
16.
Lucie Parent Stéphane Supplisson Donald D. F. Loo Ernest M. Wright 《The Journal of membrane biology》1992,125(1):49-62
Summary Cystic fibrosis (CF) is characterized by abnormal epithelial Cl– conductance (GCl). In vitro studies that have shown that cAMP regulation is an intrinsic property of the CF-affected GCl(CF-GCl) have been carried out previously on cultured secretory cells and on nonepithelial cells. Even though GCl in absorption is defective in CF, a clear demonstration of cAMP regulation of CF-GCl in a purely absorptive tissue is lacking. We studied the cAMP regulation of CF-GCl in the microperfused intact human reabsorptive sweat duct. About 40% of the ducts responded to cAMP (responsive) while the remainder of the ducts did not. In responsive ducts, cAMP-elevating agents: -adrenergic agonist isoproterenol (IPR), CPT-cAMP, forskolin, theophylline or IBMX increased G
tby about 2.3-fold (n = no. of ducts = 8). Removal of media Cl–, but not amiloride pretreatment (in the lumen), abolished the cAMP response, indicating exclusive activation of GCl. cAMP activated both apical and basolateral GCl. cAMP hyperpolarized gluconate: Cl– (lumen: bath) transepithelial bionic potentials (V
t=–20.3±5.2 mV, mean ±se, n=9) and transepithelial 3 1 luminal NaCl dilution diffusion potentials (V
t=–8.8±2.9 mV, n=5). cAMP activated basolateral GCl as indicated by increased bi-ionic (gluconate: Cl–, bath: lumen) diffusion potentials (by about 12 mV). The voltage divider ratio in symmetric NaCl solutions increased by 60%. Compared to responsive ducts, nonresponsive ducts were characterized by smaller spontaneous transepithelial potentials in symmetrical Ringer's solution (V
t=–6.9±0.8 mV, n=24, nonresponsive vs. –19.4±1.8 mV, n=22, responsive ducts) but larger bi-ionic potentials (–94±6 mV, n=35, nonresponsive vs. –65±5 mV, n=17, responsive ducts) and dilution diffusion potentials (–40±5 mV, n=11, nonresponsive vs. –29±3 mV, n=7, responsive ducts). These results are consistent with an inherently (prestimulus) maximal activation of GCl in nonresponsive ducts and submaximal activation of GCl in responsive ducts. We conclude that cAMP activates CF-G
Cl which is expressed and abnormal in both apical and basal membranes of this absorptive epithelium in CF.Abbreviations CF
cystic fibrosis
-
G
t
transepithelial conductance
-
V
b
electrical potential across the basolateral membrane
-
V
a
electrical potential across the apical membrane
-
V
t
transepithelial potential
- V
b
transepithelial currentinduced voltage deflections across the basolateral membrane
- V
a
transepithelial current-induced voltage deflections across the apical membrane
- V
t
transepithelial current-induced voltage deflection across the epithelium
- VDR
voltage divider ratio
- GCl
transepithelial Cl– conductance
- CF-GCl
cystic fibrosis-affected Cl– conductance
- EMF
electromotive force
- IPR
isoproterenol
- IBMX
3-isobutyl-1-methylxanthine
- CPT-cAMP
chlorophenylthio-adenosine 3-5 cyclic monophosphate
- PGE2
prostaglandin E2 相似文献
17.
Tyson S. Ikeda Eun-Sil Hwang Michael J. Coady Bruce A. Hirayama Matthias A. Hediger Ernest M. Wright 《The Journal of membrane biology》1989,110(1):87-95
Summary The Na+/glucose cotransporter from rabbit intestinal brush border membranes has been cloned, sequenced, and expressed inXenopus oocytes. Injection of cloned RNA into oocytes increased Na+/sugar cotransport by three orders of magnitude. In this study, we have compared and contrasted the transport properties of this cloned protein expressed inXenopus oocytes with the native transporter present in rabbit intestinal brush borders. Initial rates of14C--methyl-d-glucopyranoside uptake into brush border membrane vesicles andXenopus oocytes were measured as a function of the external sodium, sugar, and phlorizin concentrations. Sugar uptake into oocytes and brush borders was Na+-dependent (Hill coefficient 1.5 and 1.7), phlorizin inhibitable (K
i
6 and 9 m), and saturable (-methyl-d-glucopyranosideK
m
110 and 570 m). The sugar specificity was examined by competition experiments, and in both cases the selectivity wasd-glucose>-methyl-d-glucopyranoside>d-galactose>3-O-methyl-d-glucoside. In view of the close similarity between the properties of the cloned protein expressed in oocytes and the native brush border transporter, we conclude that we have cloned the classical Na+/glucose cotransporter. 相似文献
18.
Lu J Daly CM Parker MD Gill HS Piermarini PM Pelletier MF Boron WF 《The Journal of biological chemistry》2006,281(28):19241-19250
Others report that carbonic anhydrase II (CA II) binds to the C termini of the anion exchanger AE1 and the electrogenic Na/HCO3 cotransporter NBCe1-A, enhancing transport. After injecting oocytes with NBCe1-A cRNA (Day 0), we measured NBC current (I(NBC)) by two-electrode voltage clamp (Day 3), injected CA II protein + Tris or just Tris (Day 3), measured I(NBC) or the initial rate at which the intracellular pH fell (dpH(i)/dt) upon applying 5% CO2 (Day 4), exposed oocytes to the permeant CA inhibitor ethoxzolamide (EZA), and measured I(NBC) or dpH(i)/dt (Day 4). Because dpH(i)/dt was greater in CA II than Tris oocytes, and EZA eliminated the difference, injected CA II was functional. I(NBC) slope conductance was unaffected by injecting CA II. Moreover, EZA had identical effects in CA II versus Tris oocytes. Thus, injected CA II does not enhance NBC activity. In a second protocol, we made a fusion protein with enhanced green fluorescent protein (EGFP) at the 5' end of NBCe1-A and CA II at the 3' end (EGFP-e1-CAII). We measured I(NBC) or dpH(i)/dt (days 3-4), exposed oocytes to EZA, and measured I(NBC) or dpH(i)/dt (Day 3-4). dpH(i)/dt was greater in oocytes expressing EGFP-e1-CA II versus EGFP-e1, and EZA eliminated the difference. Thus, fused CA II was functional. Slope conductances of EGFP-e1-CAII versus EGFP-e1 oocytes were indistinguishable, and EZA had no effect. Thus, even when fused to NBCe1-A, CA II does not enhance NBCe1-A activity. 相似文献
19.
Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1. 相似文献
20.
Evidence for tyrosyl residues at the Na+ site on the intestinal Na+/glucose cotransporter 总被引:6,自引:0,他引:6
A tyrosine group has been identified at, or near, the Na+-binding site of the Na+/glucose and Na+/proline cotransporters of rabbit intestinal brush-borders. Three tyrosine group-specific reagents, n-acetylimidazole, tetranitromethane, and p-nitrobenzene sulfonyl fluoride, were used to evaluate the role of tyrosyl groups in Na+-dependent glucose transport, Na+-dependent phlorizin binding, and the Na+-induced fluorescence quenching of fluorescein isothiocyanate bound to the glucose site of the carrier. All three reagents inhibited glucose transport, phlorizin binding, and fluorescein isothiocyanate quenching by 50-85% with Ki values in the range 7-50 microM. The presence of Na+ during the exposure of membranes to the reagents completely protected against inhibition, the Na+ concentration required to produce 50% protection was 14-36 mM. Fluorescent derivatives of n-acetylimidazole were synthesized to identify the tyrosyl residues on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A total of five polypeptide bands were labeled with eosin or fluorescein n-acetylimidazole in a Na+-sensitive manner. Two of these bands, previously identified as the glucose (75,000-dalton) and proline (100,000-dalton) binding sites of the glucose and proline carriers, account for 50% of the Na+-sensitive tyrosyl residues. On the basis of these studies, we believe that the Na+/glucose cotransporter contains both the Na+ and glucose active sites on the same polypeptide or that the cotransporter consists of two similar polypeptides, each containing one substrate binding site. 相似文献