首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently identified the immunodominant epitope for polyoma virus-specific CTL as the Dk-associated peptide MT389-397 derived from the middle T (MT) viral oncoprotein. Another Dk-restricted peptide corresponding to residues 236-244 of MT was recognized by nearly all MT389-397-reactive CTL clones, but required concentrations at least 2 logs higher to sensitize syngeneic target cells for lysis. Except for identity at the three putative Dk-peptide anchor residues, MT236-244 shares no homology with MT389-397. Using a novel europium-based class I MHC-peptide binding immunoassay, we determined that MT236-244 bound Dk 2-3 logs less well than MT389-397. Infection with a mutant polyoma virus whose MT is truncated just before the MT389-397 epitope or immunization with MT389-397 or MT236-244 peptides elicited CTL that recognized both MT389-397 and MT236-244. Importantly, infection with a polyoma virus lacking MT389-397 and mutated in an MT236-244 Dk anchor position induced polyoma virus-specific CTL recognizing neither MT389-397 nor MT236-244 epitopes. Despite predominant usage of the Vbeta6 gene segment, MT389-397/MT236-244 cross-reactive CTL clones possess diverse complementarity-determining region 3beta domains; this is functionally reflected in their heterogeneous recognition patterns of alanine-monosubstituted MT389-397 peptides. Using Dk/MT389-397 tetramers, we directly visualized MT236-244 peptide-induced TCR down-modulation of virtually all MT389-397-specific CD8+ T cells freshly explanted from polyoma-infected mice, suggesting that a single TCR recognizes both Dk-restricted epitopes. The availability of immunodominant epitope-specific CTL capable of recognizing a second epitope in MT, a viral protein essential for tumorigenesis, may serve to amplify the CTL response to the immunodominant epitope and prevent the emergence of immunodominant epitope-loss viruses and virus-induced tumors.  相似文献   

2.
Human T cell lymphotropic virus type 1 (HTLV-1)-specific CTL are thought to be immune effectors that reduce the risk of adult T cell leukemia (ATL). However, in vivo conditions of anti-HTLV-1 CTL before and after ATL development have yet to be determined. To characterize anti-HTLV-1 CTL in asymptomatic HTLV-1 carriers (AC) and ATL patients, we analyzed the frequency and diversity of HTLV-1-specific CD8+ T cells in PBMC of 35 AC and 32 ATL patients using 16 distinct epitopes of HTLV-1 Tax or Env/HLA tetramers along with intracellular cytolytic effector molecules (IFN-gamma, perforin, and granzyme B). Overall frequency of subjects possessing Tax-specific CD8+ T cells was significantly lower in ATL than AC (53 vs 90%; p = 0.001), whereas the difference in Env-specific CD8+ T cells was not statistically significant. AC possessed Tax11-19/HLA-A*0201-specific tetramer+ cells by 90% and Tax301-309/HLA-A*2402-specific tetramer+ cells by 92%. Some AC recognized more than one epitope. In contrast, ATL recognized only Tax11-19 with HLA-A*0201 and Tax301-309 with HLA-A*2402 at frequencies of 30 and 55%. There were also significant differences in percentage of cells binding Tax11-19/HLA-A*0201 and Tax301-309/HLA-A*2402 tetramers between AC and ATL. Anti-HTLV-1 Tax CD8+ T cells in AC and ATL produced IFN-gamma in response to Tax. In contrast, perforin and granzyme B expression in anti-HTLV-1 CD8+ T cells of ATL was significant lower than that of AC. Frequency of Tax-specific CD8+ T cells in AC was related to proviral load in HLA-A*0201. These results suggest that decreased frequency, diversity, and function of anti-HTLV-1 Tax CD8+ T cell clones may be one of the risks of ATL development.  相似文献   

3.
The primary manifestation of X-linked lymphoproliferative syndrome, caused by a dysfunctional adapter protein, signaling lymphocyte activation molecule-associated protein (SAP), is an excessive T cell response upon EBV infection. Using the SAP-/- mouse as a model system for the human disease, we compared the response of CD8+ T cells from wild-type (wt) and mutant mice to various stimuli. First, we observed that CD8+ T cells from SAP-/- mice proliferate more vigorously than those from wt mice upon CD3/CD28 cross-linking in vitro. Second, we analyzed the consequence of SAP deficiency on CTL effector function and homeostasis. For this purpose, SAP-/- and wt mice were infected with the murine gamma-herpesvirus 68 (MHV-68). At 2 wk postinfection, the level of viral-specific CTL was much higher in mutant than in wt mice, measured both ex vivo and in vivo. In addition, we established that throughout 45 days of MHV-68 infection the frequency of virus-specific CD8+ T cells producing IFN-gamma was significantly higher in SAP-/- mice. Consequently, the level of latent infection by MHV-68 was considerably lower in SAP-/- mice, which indicates that SAP-/- CTL control this infection more efficiently than wt CTL. Finally, we found that the Vbeta4-specific CD8+ T cell expansion triggered by MHV-68 infection is also enhanced and prolonged in SAP-/- mice. Taken together, our data indicate that SAP functions as a negative regulator of CD8+ T cell activation.  相似文献   

4.
The observed role of CTL in the containment of AIDS virus replication suggests that an effective HIV vaccine will be required to generate strong CTL responses. Because epitope-based vaccines offer several potential advantages for inducing strong, multispecific CTL responses, we tested the ability of an epitope-based DNA prime/modified vaccinia virus Ankara (MVA) boost vaccine to induce CTL responses against a single SIVgag CTL epitope. As assessed using both 51Cr release assays and tetramer staining of in vitro stimulated PBMC, DNA vaccinations administered to the skin with the gene gun induced and progressively increased p11C, C-->M (CTPYDINQM)-specific CD8+ T lymphocyte responses in six of six Mamu-A*01+ rhesus macaques. Tetramer staining of fresh, unstimulated PBMC from two of the DNA-vaccinated animals indicated that as much as 0.4% of all CD3+/CD8alpha+ T lymphocytes were specific for the SIVgag CTL epitope. Administration of MVA expressing the SIVgag CTL epitope further boosted these responses, such that 0.8-20.0% of CD3+/CD8alpha+ T lymphocytes in fresh, unstimulated PBMC were now Ag specific. Enzyme-linked immunospot assays confirmed this high frequency of Ag-specific cells, and intracellular IFN-gamma staining demonstrated that the majority of these cells produced IFN-gamma after peptide stimulation. Moreover, direct ex vivo SIV-specific cytotoxic activity could be detected in PBMC from five of the six DNA/MVA-vaccinated animals, indicating that this epitope-based DNA prime/MVA boost regimen represents a potent method for inducing high levels of functionally active, Ag-specific CD8+ T lymphocytes in non-human primates.  相似文献   

5.
It has been generally believed that human CD8+ memory cells are principally found within the CD45ROhigh population. There are high frequencies of CD8+ memory CTL specific for the human CMV tegument phosphoprotein pp65 in PBMC of long-term virus carriers; the large population of memory CTL specific for a given pp65 peptide contains individual CTL clones that have greatly expanded. In this study, we found high frequencies of pp65 peptide-specific memory CTL precursors in the CD45ROhighCD45RA- population, but also appreciable frequencies in the CD45RAhigh subpopulation. Because the majority of CD8+ T cells in PBMC are CD45RAhigh, more of the total pp65-specific memory CTL pool is within the CD45RAhigh than in the CD45ROhigh compartment. Using clonotypic oligonucleotide probes to quantify the size of individual pp65-specific CTL clones in vivo, we found the CD45RAhigh population contributed 6- to 10-fold more than the CD45ROhigh population to the total virus-specific clone size in CD8+ cells. During primary CMV infection, an individual virus-specific CTL clone was initially CD45ROhigh, but after resolution of infection this clone was detected in both the CD45ROhigh and the CD45RAhigh populations. We conclude that CD45RA+ human CD8+ T cells do not solely comprise naive cells, but contain a very significant proportion of memory cells, which can revert from the CD45ROhigh to CD45RAhigh phenotype in vivo.  相似文献   

6.
The CTL response was characterized during primary SIV/macaque (SIVmac) infection of rhesus monkeys to assess its role in containing early viral replication using both an epitope-specific functional and an MHC class I/peptide tetramer-binding assay. The rapid expansion of a single dominant viral epitope-specific CTL population to 1.3-8.3% of circulating CD8+ peripheral blood and 0. 3-1.3% of lymph node CD8+ T cells was observed, peaking at day 13 following infection. A subsequent decrease in number of these cells was then demonstrated. Interestingly, the percent of tetramer-binding CD8+ T cells detected in the lymph nodes of all evaluated animals was smaller than the percent detected in PBL. These epitope-specific CD8+ T cells expressed cell surface molecules associated with memory and activation. Early clearance of SIVmac occurred coincident with the emergence of the CTL response, suggesting that CTL may be important in containing virus replication. A higher percent of annexin V-binding cells was detected in the tetramer+ CD8+ T cells (range, from 33% to 75%) than in the remaining CD8+ T cells (range, from 3.3% to 15%) at the time of maximum CTL expansion in all evaluated animals. This finding indicates that the decrease of CTL occurred as a result of the death of these cells rather than their anatomic redistribution. These studies provide strong evidence for the importance of CTL in containing AIDS virus replication.  相似文献   

7.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

8.
Although the dynamics of human immunodeficiency virus and Simian immunodeficiency virus (SIV)-specific cytotoxic T cells (CTLs) have been well documented in the blood, little is known regarding CTL development in other tissues. In this study, seven Mamu-A*01+ macaques were inoculated with SIVmac. Two macaques were killed at 21 days of infection, and SIV gag p11C tetramer responses were measured in the blood, axillary and mesenteric lymph nodes, spleen, bone marrow, and thymus. Three with clinical signs of disease were killed and similarly examined. Four macaques were followed throughout disease progression, and intestinal biopsies and blood were examined at regular time points after inoculation. In animals followed prospectively, peak early tetramer responses were detected in the blood (3.9-19% of CD3+ CD8+ T cells) between day 14-21 post-inoculation (p.i.). After day 49, tetramer responses in the blood diminished and remained relatively stable through day 200, ranging from 0.7-6.5% of CD3+ CD8+ T cells. In contrast, tetramer-positive T cells increased in the intestine in later stages of infection (100-200 days p.i.) in all four infected animals (peak values from 5.3 to 28.8%). Percentages of tetramer-positive cells were consistently higher in the intestine than in the blood in all four animals after day 100. In animals with acquired immunodeficiency syndrome, percentages of CTL in tissues were variable, but were consistently higher in the intestine and spleen compared with blood. These data suggest that while high CTL responses develop at a similar rate, and magnitude in both peripheral and mucosal lymphoid tissues in primary SIV infection, mucosal CTL responses may predominate later in the course of the disease.  相似文献   

9.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

10.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

11.
CTL play a major role in the clearance of respiratory syncytial virus (RSV) during experimental pulmonary infection. The fusion (F) glycoprotein of RSV is a protective Ag that elicits CTL and Ab response against RSV infection in BALB/c mice. We used the strategy of screening a panel of overlapping synthetic peptides corresponding to the RSV F protein and identified an immunodominant H-2K(d)-restricted epitope (F(85-93); KYKNAVTEL) recognized by CD8(+) T cells from BALB/c mice. We enumerated the F-specific CD8(+) T cell response in the lungs of infected mice by flow cytometry using tetramer staining and intracellular cytokine synthesis. During primary infection, F(85-93)-specific effector CD8(+) T cells constitute approximately 4.8% of pulmonary CD8(+) T cells at the peak of the primary response (day 8), whereas matrix 2-specific CD8(+) T cells constituted approximately 50% of the responding CD8(+) T cell population in the lungs. When RSV F-immune mice undergo a challenge RSV infection, the F-specific CD8(+) T cell response is accelerated and dominates, whereas the primary response to the matrix 2 epitope in the lungs is reduced by approximately 20-fold. In addition, we found that activated F-specific effector CD8(+) T cells isolated from the lungs of RSV-infected mice exhibited a lower than expected frequency of IFN-gamma-producing CD8(+) T cells and were significantly impaired in ex vivo cytolytic activity compared with competent F-specific effector CD8(+) T cells generated in vitro. The significance of these results for the regulation of the CD8(+) T cell response to RSV is discussed.  相似文献   

12.
Gut-associated lymphoid tissue is the major reservoir of lymphocytes and human immunodeficiency virus type 1 (HIV-1) replication in vivo, yet little is known about HIV-1-specific CD8+ T-lymphocyte (CTL) responses in this compartment. Here we assessed the breadth and magnitude of HIV-1-specific CTL in the peripheral blood and sigmoid colon mucosa of infected subjects not on antiretroviral therapy by enzyme-linked immunospot analysis with 53 peptide pools spanning all viral proteins. Comparisons of blood and mucosal CTL revealed that the magnitude of pool-specific responses is correlated within each individual (mean r2 = 0.82 +/- 0.04) and across all individuals (r2 = 0.75; P < 0.001). Overall, 85.1% of screened peptide pools yielded concordant negative or positive results between compartments. CTL targeting was also closely related between blood and mucosa, with Nef being the most highly targeted (mean of 2.4 spot-forming cells [SFC[/10(6) CD8+ T lymphocytes/amino acid [SFC/CD8/aa]), followed by Gag (1.5 SFC/CD8/aa). Finally, comparisons of peptide pool responses seen in both blood and mucosa (concordant positives) versus those seen only in one but not the other (discordant positives) showed that most discordant results were likely an artifact of responses being near the limit of detection. Overall, these results indicate that HIV-1-specific CTL responses in the blood mirror those seen in the mucosal compartment in natural chronic infection. For protective or immunotherapeutic vaccination, it will be important to determine whether immunity is elicited in the mucosa, which is a key site of initial infection and subsequent HIV-1 replication in vivo.  相似文献   

13.
p53 is an attractive target for cancer immunotherapy since it is overexpressed in half of all tumors. However, it is also expressed in normal lymphoid tissue, and self tolerance leaves a p53-specific repertoire purged of high avidity CTL. To better understand the mechanism of tolerance and the basis for such low avidity interaction, p53-specific CTL from p53 deficient (p53-) and sufficient (p53+) A2.1/Kb transgenic mice were compared with respect to their ability to bind HLA-A2.1 tetramers containing cognate murine p53 peptide Ag, p53 261-269. Since the murine CD8 molecule cannot interact with human HLA-A2.1, this tests the ability of the TCR to bind the A2.1/peptide complex tetramer. CTL from p53- mice demonstrated strong binding of such A2.1/p53 261-269 tetramers; however, the CTL from tolerant p53+ mice were devoid of tetramer-binding CD8+ T cells. Examination of TCR expression at the clonal level revealed that CTL from p53+ and p53- mice each expressed comparable levels of the p53-specific TCR. These results indicate that normal expression of p53 promotes elimination of T cells expressing TCRs with sufficient affinity to achieve stable binding of the A2.1/p53 261-269 tetramers.  相似文献   

14.
Cytotoxic T lymphocytes (CTL) appear to play an important role in the control of human cytomegalovirus (HCMV) in the normal virus carrier: previous studies have identified peripheral blood CD8+ CTL specific for the HCMV major immediate-early gene product (IE1) and more recently, by bulk culture and cloning techniques, have identified CTL specific for a structural gene product, the lower matrix protein pp65. In order to determine the relative contributions of CTL which recognize the HCMV proteins IE1, pp65, and glycoprotein B (gB) to the total HCMV-specific CTL response, we have used a limiting-dilution analysis system to quantify HCMV-specific CTL precursors with different specificities, allowing the antigenic specificity of multiple short-term CTL clones to be assessed, in a group of six healthy seropositive donors. All donors showed high frequencies of HCMV-specific major histocompatibility complex-restricted CTL precursors. There was a very high frequency of CTL specific for pp65 (lower matrix protein); IE1-specific CTL were also detectable at lower frequencies in three of five donors, while CTL directed to gB were undetectable. A pp65 gene deletion mutant of HCMV was then used to estimate the contribution of pp65-specific CTL to the total HCMV-specific CTL response; this showed that between 70 and 90% of all CTL recognizing HCMV-infected cells were pp65 specific. Analysis of the peptide specificity of pp65-specific CTL showed that some donors have a highly focused response recognizing a single peptide; the T-cell receptor Vbeta gene usage in these two donors was shown to be remarkably restricted, with over half of the responding CD8+ T cells utilizing a single Vbeta gene rearrangement. Other subjects recognized multiple pp65 peptides: nine new pp65 CTL peptide epitopes were defined, and for five of these the HLA-presenting allele has been identified. All four of the HLA A2 donors tested in this study recognized the same peptide. This apparent domination of the CTL response to HCMV during persistent infection by a single structural protein, irrespective of major histocompatibility complex haplotype, is not clearly described for other persistent virus infections, and the mechanism requires further investigation.  相似文献   

15.
Mutations in ras proto-oncogenes are commonly found in a diversity of malignancies and may encode unique, non-self epitopes for T cell-mediated antitumor activity. In a BALB/c (H-2(d)) murine model, we have identified a single peptide sequence derived from the ras oncogenes that contained both CD8(+) and CD4(+) T cell epitopes in a nested configuration. This peptide reflected ras sequence 4-16, and contained the substitution of Gly to Val at position 12 ?i.e., 4-16(Val12)?. Mice immunized with this 13-mer peptide induced a strong antigen (Ag)-specific CD4(+) proliferative response in vitro. In contrast, mice inoculated with the wild-type ras sequence failed to generate a peptide-specific T cell response. Additionally, mice immunized with the ras 4-16(Val12) peptide concomitantly displayed an Ag-specific CD8(+) cytotoxic T lymphocyte (CTL) response, as determined by lysis of syngeneic tumor target cells incubated with the nominal 9-mer nested epitope peptide ?i.e., 4-12(Val12)?, as well as lysis of tumor target cells expressing the corresponding ras codon 12 mutation. Analysis of the Valpha- and Vbeta-chains of the T cell receptor (TCR) expressed by these CTL revealed usage of the Valpha1 and Vbeta9 subunits, consistent with the TCR phenotype of anti-ras Val12 CTL lines produced by in vivo immunization with the nominal peptide epitope alone. Moreover, immunization with the nested epitope peptide, as compared to immunization with either the 9-mer CTL peptide alone or an admixture of the 9-mer CTL peptide with an overlapping 13-mer CD4(+) T cell helper peptide ?i.e., 5-17(Val12)? lacking the class I N-terminus anchor site, enhanced the production of the CD8(+) T cell response. Finally, immunization with plasmid DNA encoding the ras 4-16(Val12) sequence led to the induction of both Ag-specific proliferative and cytotoxic responses. Overall, these results suggested that a single peptide immunogen containing nested mutant ras-specific CD4(+) and CD8(+) T cell epitopes: (1) can be processed in vivo to induce both subset-specific T lymphocyte responses; and (2) leads to the generation of a quantitatively enhanced CD8(+) CTL response, likely due to the intimate coexistence of CD4(+) help, which may have implications in peptide- or DNA-based immunotherapies.  相似文献   

16.
Most attempts to induce CTL responses by in vivo priming with free synthetic peptides have been unsuccessful so far. However, two separate studies have recently succeeded in inducing antiviral CTL responses by immunizing mice with unmodified free synthetic peptides derived from nucleoproteins from either lymphocytic choriomeningitis virus or Sendai virus. In the present study, we have analyzed the cellular mechanisms by which the lymphocytic choriomeningitis virus synthetic peptide induced CTL responses. We demonstrated that this peptide, which was previously shown to be recognized by CD8+ T cells, also contains a helper CD4+ T cell epitope. It stimulates in vivo both CD4+ T cell-mediated CTL response. The in vivo elimination of CD4+ T cells by treatment with a mAb was shown to strongly reduce the antipeptide CTL response. This study therefore demonstrates that to be able to induce CTL responses, a peptide has to stimulate both CD4+ and CD8+ T cell subset.  相似文献   

17.
Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.  相似文献   

18.
Memory CD8 T cells comprise a critical component of durable immunity because of their capacity to rapidly proliferate and exert effector activity upon Ag rechallenge. During persistent viral infection, memory CD8 T cells repetitively encounter viral Ag and must maintain a delicate balance between limiting viral replication and minimizing immunopathology. In mice infected by polyoma virus, a natural mouse pathogen that establishes long-term persistent infection, the majority of persistence-phase antiviral CD8 T cells express the inhibitory NK cell receptor CD94/NKG2A. In this study, we asked whether CD94/NKG2A expression is associated with Ag-specific recall of polyoma virus-specific CD8 T cells. During the persistent phase of infection, polyoma virus-specific CD8 T cells that express CD94/NKG2A were found to preferentially proliferate; this proliferation was dependent on cognate Ag both in vitro and in vivo. In addition, CD94/NKG2A(+) polyoma-specific CD8 T cells have a markedly enhanced capacity to produce IL-2 upon ex vivo Ag stimulation compared with CD94/NKG2A(-) polyoma-specific CD8 T cells. Importantly, CD94/NKG2A(+) anti-polyoma virus CD8 T cells appear to be essential for Ag-specific recall responses in mice persistently infected by polyoma virus. Because of its higher proliferative potential and capacity to produce IL-2, we propose that the CD94/NKG2A(+) subpopulation represents a less differentiated state than the CD94/NKG2A(-) subpopulation. Identification of proliferation-competent subpopulations of memory CD8 T cells should prove valuable in designing therapeutic vaccination strategies for persistent viral infections.  相似文献   

19.
Heteroclitic peptides are used to enhance the immunogenicity of tumor-associated Ags to break T cell tolerance to these self-proteins. One such altered peptide ligand (Cap1-6D) has been derived from an epitope in human carcinoembryonic Ag, CEA(605-613) (Cap1). Clinical responses have been seen in colon cancer patients receiving a tumor vaccine comprised of this altered peptide. Whether Cap1-6D serves as a T cell agonist for Cap1-specific T cells or induces different T cells is unknown. We, therefore, examined the T cell repertoires elicited by Cap1-6D and Cap1. Human CTL lines and clones were generated with either Cap1-6D peptide (6D-CTLs) or Cap1 peptide (Cap1-CTLs). The TCR Vbeta usage and functional avidity of the T cells induced in parallel against these target peptides were assessed. The predominant CTL repertoire induced by agonist Cap1-6D is limited to TCR Vbeta1-J2 with homogenous CDR3 lengths. In contrast, the majority of Cap1-CTLs use different Vbeta1 genes and also had diverse CDR3 lengths. 6D-CTLs produce IFN-gamma in response to Cap1-6D peptide with high avidity, but respond with lower avidity to the native Cap1 peptide when compared with the Cap1-CTLs. Nevertheless, 6D-CTLs could still lyse targets bearing the native epitope. Consistent with these functional results, 6D-CTLs possess TCRs that bind Cap-1 peptide/MHC tetramer with higher intensity than Cap1-CTLs but form less stable interactions with peptide/MHC as measured by tetramer decay. These results demonstrate that priming with this CEA-derived altered peptide ligand can induce distinct carcinoembryonic Ag-reactive T cells with different functional capacities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号