首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution conformations of a hybrid sequence peptide related to the bee venom peptide apamin have been determined using two-dimensional 1H-nmr. Apamin is an 18 amino acid peptide containing a C-terminal helix that is stabilized by two disulfide bonds. The deletion of one residue (K4) of the N-terminal “scaffold” region of the apamin sequence results in a helical peptide, but with a change in the pairing of cysteines to form the disulfide cross links. The new disulfide arrangement is analogous to that of the vasoconstrictor peptide endothelin. Two sets of nmr resonances were observed for the apamin-deletion (AD) peptide, due to cis-trans isomerism at the A4-P5 peptide bond. The cis isomer of the AD peptide contains a tight turn in residues 3–6, which is required for formation of the α-helix in residues 7–15. Nuclear Overhauser effects observed for the trans AD peptide are not consistent with any single unique fold, indicating the presence of conformational averaging when the peptide adopts the trans form. Distance geometry calculations on the cis AD peptide reveal an α-helical structure that appears to be more like that of apamin than the crystal structure of human endothelin, despite the reversal of the disulfide pattern in the AD peptide from that of apamin to that of endothelin.© 1997 John Wiley & Sons, Inc. Biopoly 41 : 451–460, 1997  相似文献   

2.
Direct interactions of venom peptides that contained a cysteine-stabilized alpha-helical motif within their internal molecules with alpha beta gamma-trimeric GTP-binding proteins (G proteins) were studied in reconstituted phospholipid vesicles. Mast cell-degranulating (MCD) peptide stimulated the steady-state rate of GTP hydrolysis catalyzed by the reconstituted G proteins. Synthetic D-MCD peptide, the optical isomer of MCD peptide, was also effective in the activation of G proteins as L-MCD peptide. The stimulations by L- and D-peptides were both abolished in G proteins that had been ADP-ribosylated by pertussis toxin. Charybdotoxin also stimulated, though slightly, the GTPase activity of G proteins. Such a stimulation was, however, not observed upon the incubation of G proteins with other venom peptides such as apamin, sarafotoxin and endothelin. Thus, in comparison of the amino acid sequences of their venom peptides, the extent of the activation of G proteins appeared to be correlated with the number of basic amino acid residues around the alpha-helix. These results suggest that cationic clusters at one side of the alpha-helical surface are more important in the direct activation of G proteins than a specific, alpha-helical structure.  相似文献   

3.
A model 16-peptide of endothelin-1 (MET-1), which has the minimized sequence homology to the corresponding pan of endothelin-1 (ET-1), was designed to confirm the cystine-stabilized α-helix motif. The model structure consists of an extended structure, a β-turn part, and an α-helix structure that is stabilized by two disulfide bonds. The α-helix segment was designed to emphasize the amphiphilic nature. In order to combine the extended structure and the α-helix segment, a D -Ala-Pro sequence was selected to fix the β-turn. The model endothelin 16-peptide amide was synthesized by solid-phase synthesis on a 4-methylbenzhydrylamine resin. Its conformation was examined by CD and two-dimensional (2D) 1H-nmr measurements. MET-1 showed similar CD patterns to ET-1 in both buffer and 50% aqueous trifluoroethanol solution. The 2D nmr experiments in 50% aqueous ethylene glycol revealed that MET-1 closely resembles the conformation of ET-1 with an extended structure, an α-helix, and a β-turn unit in the same position of the sequence. Furthermore, model peptides without disulfide bond(s) could not assume a stable structure in aqueous solution, while they did have similar α-helical content in 50% trifluoroethanol with MET-1. When the two disulfide bridges were simultaneously formed, the peptide with the correct disulfide bonds (MET-1) was obtained in threefold excess to the isomer (apamin type. MET-2). These findings obtained by the modeling of ET-1 showed an important role for the stabilization of peptide conformation with disulfide bonds. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Apamin is a single-chain, disulfide-bonded, 18-amino acid peptide that elicits mouse T cell responses when presented by cells expressing syngeneic Ad or Ab class II MHC molecules. We previously showed that both the unfolding of this peptide by APC and the integrity of its N terminus segment were required for efficient apamin T cell recognition. To seek further information on the sites through which this peptide interacts with Ia and/or TCR, we used a panel of Ad- or Ab-restricted, apamin-specific THC to probe the antigenicity of a series of synthetic apamin analogs. These included peptides either truncated at the N terminus, or substituted by Ala at position 2, 4, 6, 7, 8, or 10. Analysis of THC responses to apamin analogs and use of the latter in competition assays for peptide presentation revealed the following: 1) optimal apamin T cell recognition critically involved Lys4, Ala5, Pro6, Glu7, and Leu10. The role of these residues in either "Ia or TCR binding regions" was found to depend upon the restricting Ia molecules at play. Thus, Lys4, Glu7, and Leu10 were TCR-binding residues in both Ad- and Ab-apamin complexes, whereas Lys4 participated in apamin/Ab but not, or to a marginal extent, in apamin/Ad interaction. Furthermore, Pro6 was associated either with an Ia contact region or a TCR interaction site when apamin was presented by Ab or Ad molecules, respectively. Unfolded apamin and the unrelated chicken OVA323-339 peptide were found to bind to the same, or closely related site(s) of Ad, as shown by their ability to compete reciprocally for recognition by appropriate Ad-restricted THC. Four distinct TCR V beta genes (V beta 2, V beta 4, V beta 6, and V beta 8) were found to be used in our panel of 16 apamin-specific THC. These data indicate that apamin interacts with Ad or TCR through a motif resembling other beta-sheeted, Ad-binding sequences; however, based on the spacing of the critical residues (i.e., 4, 7, and 10), the possibility exists that apamin processing permits the folding of this sequence into an alpha-helix.  相似文献   

5.
The endothelins (ETs), sarafotoxins (SRTXs), vasoactive intestinal contractor (VIC), and bibrotoxin are a family of potent vasoconstrictor peptides. All peptides in this family possess 21 amino acids arranged in a unique bicyclic motif formed between cystine bridges in the 1–15 and 3–11 positions. Since the discovery of endothelin-1 (ET-1) in 1988, significant effort has been focused on the understanding of its structure–activity relationships. The identification of endothelin receptor subtypes has led to the discovery/design of potent peptide agonists and antagonists, along with nonpeptide antagonists of endothelin with varying levels of potency and receptor subtype selectivity. In keeping with the theme of this journal, this review will focus only on the development of peptidic-based agonists and antagonists of endothelin in addition to their applications in understanding the physiological and/or pathophysiological role of endothelin and its isopeptides. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The receptor for the bee venom derived neurotoxin, apamin, is widely believed to be an integral component of the small conductance calcium-activated potassium channel in many excitable cells. By affinity chromatography on immobilized apamin, a 78 kD apamin binding protein of the bovine brain synaptosomes was isolated. Antibodies were elicited against this protein and used to clone a cDNA from a porcine vascular smooth muscle expression library. This gene (Kcal 1.8) codes for a 438 amino protein with four potential transmembrane domains, one putative calcium binding site, a protein kinase C phosphorylation site, and a leucine zipper motif. Kcal 1.8 encoded protein has no significant sequence homologies with any known ion channels or receptors. Kcal 1.8 is likely to encode a protein associated with the small conductance calcium-activated potassium channel in vascular smooth muscle.  相似文献   

7.
The calculation of the complete spatial structure of the bee venom peptide neurotoxin apamin has been carried out by means of a method elaborated earlier. It is based on the joint utilization of the molecular mechanics algorithms and NMR spectroscopy data. It was established that the molecule backbone conformation in solution may be represented as the combination of the beta-turn III (residues 2-5) and alpha-helical segment (9-18) both separated by the non-standard bend IV (5-8). The most probable system of the intramolecular hydrogen bonds in the apamin polypeptide backbone was proposed. Certain amino acid residues have been shown to be characterized by the lack of strict determination of the conformations of their side chains which may be realized in a few states providing approximately equal stabilization of the same form of the main chain. The conformational parameters of the proposed apamin structural model are appropriate to the NMR spectroscopy data derived from the literature and used in the calculations and are not contradictory to other experimental information.  相似文献   

8.
The non-enzymatic reaction between reducing sugars and long-lived proteins in vivo results in the formation of glycation and advanced glycation end products, which alter the properties of proteins including charge, helicity, and their tendency to aggregate. Such protein modifications are linked with various pathologies associated with the general aging process such as Alzheimer disease and the long-term complications of diabetes. Although it has been suggested that glycation and advanced glycation end products altered protein structure and helicity, little structural data and information currently exist on whether or not glycation does indeed influence or change local protein secondary structure. We have addressed this problem using a model helical peptide system containing a di-lysine motif derived from human serum albumin. We have shown that, in the presence of 50 mm glucose and at 37 degrees C, one of the lysine residues in the di-lysine motif within this peptide is preferentially glycated. Using NMR analysis, we have confirmed that the synthetic peptide constituting this helix does indeed form a alpha-helix in solution in the presence of 30% trifluoroethanol. Glycation of the model peptide resulted in the distortion of the alpha-helix, forcing the region of the helix around the site of glycation to adopt a 3(10) helical structure. This is the first reported evidence that glycation can influence or change local protein secondary structure. The implications and biological significance of such structural changes on protein function are discussed.  相似文献   

9.
J H Pease  D E Wemmer 《Biochemistry》1988,27(22):8491-8498
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 A. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the beta-turn (residues 2-5) and the C-terminal alpha-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods.  相似文献   

10.
The sequence of apamin, an 18 residue bee venom toxin, encloses all the information required for the correct disulfide-coupled folding into the cystine-stabilized alpha-helical motif. Three apamin analogs, each containing a pair of selenocysteine residues replacing the related cysteines, were synthesized to mimic the three possible apamin isomers with two crossed, parallel, or consecutive disulfides, respectively. Refolding experiments clearly revealed that the redox potential of selenocysteine prevails over the sequence encoded structural information for proper folding of apamin. Thus, selenocysteine can be used as a new device to generate productive and nonproductive folding intermediates of peptides and proteins. In fact, disulfides are selectively reduced in presence of the diselenide and the conformational features derived from these intermediates as well as from the three-dimensional (3D) structures of the selenocysteine-containing analogs with their nonnatural networks of diselenide/disulfide bridges allowed to gain further insight into the subtle driving forces for the correct folding of apamin that mainly derive from local conformational preferences.  相似文献   

11.
The solution structure of tertiapin, a 21-residue bee venom peptide, has been characterized by circular dichroism (CD), two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and distance geometry. A total of 21 lowest error structures were obtained from distance geometry calculations. Superimposition of these structures shows that the backbone of tertiapin is very well defined. One type-I reverse turn from residue 4 to 7 and an α-helix from residue 12 to 19 exist in the structure of tertiapin. The α-helical region is best defined from both conformational analysis and structural superimposition. The overall three-dimensional structure of tertiapin is highly compact resulting from side chain interactions. The structural information obtained from CD and NMR are compared for both tertiapin and apamin (ref. 3), another bee venom peptide. Tertiapin and apamin have some similar secondary structure, but display different tertiary structures. © 1993 Wiley-Liss, Inc.  相似文献   

12.
A cDNA encoding a human endothelium-derived vasoconstrictor peptide, endothelin, was isolated from a human placenta cDNA library. The nucleotide sequence of this cDNA clone showed that the primary structure of the human preproendothelin has 212 amino acid residues and is highly homologous to porcine preproendothelin, and that human endothelin is identical with porcine endothelin.  相似文献   

13.
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline/alanine-rich kinase (SPAK) are key enzymes in a signalling cascade regulating the activity of Na(+)/K(+)/2Cl(-) co-transporters (NKCCs) in response to osmotic stress. Both kinases have a conserved carboxy-terminal (CCT) domain, which recognizes a unique peptide (Arg-Phe-Xaa-Val) motif present in OSR1- and SPAK-activating kinases (with-no-lysine kinase 1 (WNK1) and WNK4) as well as its substrates (NKCC1 and NKCC2). Here, we describe the structural basis of this recognition event as shown by the crystal structure of the CCT domain of OSR1 in complex with a peptide containing this motif, derived from WNK4. The CCT domain forms a novel protein fold that interacts with the Arg-Phe-Xaa-Val motif through a surface-exposed groove. An intricate web of interactions is observed between the CCT domain and an Arg-Phe-Xaa-Val motif-containing peptide derived from WNK4. Mutational analysis shows that these interactions are required for the CCT domain to bind to WNK1 and NKCC1. The CCT domain structure also shows how phosphorylation of a Ser/Thr residue preceding the Arg-Phe-Xaa-Val motif results in a steric clash, promoting its dissociation from the CCT domain. These results provide the first molecular insight into the mechanism by which the SPAK and OSR1 kinases specifically recognize their upstream activators and downstream substrates.  相似文献   

14.
The sequences of the peptide binding domains of 33 70 kd heat shock proteins (hsp70) have been aligned and a consensus secondary structure has been deduced. Individual members showed no significant deviation from the consensus, which showed a beta 4 alpha motif repeated twice, followed by two further helices and a terminus rich in Pro and Gly. The repeated motif could be aligned with the secondary structure of the functionally equivalent peptide binding domain of human leucocyte antigen (HLA) class I maintaining equivalent residues in structurally important positions in the two families and a model was built based on this alignment. The interaction of this domain with the ATP domain is considered. The overall model is shown to be consistent with the properties of products of chymotryptic cleavage.  相似文献   

15.
The molecular basis for recognition of peptide ligands endothelin‐1, ‐2 and ‐3 in endothelin receptors is poorly understood. Especially the origin of ligand selectivity for ETA or ETB is not clearly resolved. We derived sequence‐structure‐function relationships of peptides and receptors from mutational data and homology modeling. Our major findings are the dissection of peptide ligands into four epitopes and the delineation of four complementary structural portions on receptor side explaining ligand recognition in both endothelin receptor subtypes. In addition, structural determinants for ligand selectivity could be described. As a result, we could improve the selectivity of BQ3020 about 10‐fold by a single amino acid substitution, validating our hypothesis for ligand selectivity caused by different entrances to the receptors' transmembrane binding sites. A narrow tunnel shape in ETA is restrictive for a selected group of peptide ligands' N‐termini, whereas a broad funnel‐shaped entrance in ETB accepts a variety of different shapes and properties of ligands. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Although some exceptional motifs have been identified, it is well known that the PXXP motif is the motif of ligand proteins generally recognized by the Src homology 3 (SH3) domain. SH3-ligand interactions are usually weak, with ordinary KD approximately 10 microM. The structural basis for a tight and specific association (KD = 0.24 microm) between Gads SH3 and a novel motif, PX(V/I)(D/N)RXXKP, was revealed in a previous structural analysis of the complex formed between them. In this paper, we report the crystal structure of the signal transducing adaptor molecule-2 (STAM2) SH3 domain in complex with a peptide with a novel motif derived from a ligand protein, UBPY. The derived KD value for this complex is 27 microM. The notable difference in affinity for these parallel complexes may be explained because the STAM2 SH3 structure does not provide a specificity pocket for binding, whereas the Gads SH3 structure does. Instead, the structure of STAM2 SH3 is analogous to that of Grb2 SH3 which, in addition to normal PXXP ligands, has also been shown to moderately recognize the novel motif discussed herein. Thus, the extremely tight interaction observed between Gads SH3 and the novel motif is caused not by an innate ability of the novel motif but rather by an evolutionary change in the Gads SH3 domain. Instead, SH3 domains of STAM2 and Grb2 retain the moderate characteristics of recognizing their ligand proteins like other SH3 domains for appropriate transient interactions between signaling molecules.  相似文献   

17.
The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b (KR-SRTb) designed from the Lys-2-Arg-1 dipeptide of the endothelin pro-sequence and the sarafotoxin-S6b sequence was synthesized. Its contractile activity was found to be decreased markedly when compared with that of the parent SRTb. In contrast, the extension by the Lys-Arg dipeptide was found to increase the formation of the native disulfide isomer (82/18 versus 96/4) when the reaction was carried out in the presence of redox reagents. The solution structure of KR-SRTb was determined by NMR as a function of pH. In the carboxylic acid state, the structure consists of the cystine-stabilized alpha-helical motif, with the alpha-helical part spanning residues 9-15, and of an unstructured C-terminal tail. In the carboxylate state, the structure is characterized by a salt-bridge between Arg(-1) and Asp8, which we identified previously in the [Lys(-2)-Arg(-1)]-endothelin-1 peptide (KR-ET-1). The fact that this salt-bridge is commonly observed in KR-SRTb and KR-ET-1, despite the 33% sequence difference between the corresponding parental peptides, highlights the remarkable adaptability of the Lys-Arg extension for the formation of a special salt-bridge. As a consequence, this salt-bridge, which does not depend on either the 4-7 sequence of the loop or the C-terminal sequence, appears to be particularly well suited to improve the stability of the cystine-stabilized alpha-helical motif. Therefore, because of its high yield in the native disulfide arrangement and its high permissiveness for sequence mutation in the 4-7 loop, such a stabilized cystine-stabilized alpha-helical motif could be a valuable scaffold for the presentation of a library of constrained short peptides.  相似文献   

18.
The mixed lineage leukemia protein-1 (MLL1) catalyzes histone H3 lysine 4 methylation and is regulated by interaction with WDR5 (WD-repeat protein-5), RbBP5 (retinoblastoma-binding protein-5), and the Ash2L (absent, small, homeotic discs-2-like) oncoprotein. In the accompanying investigation, we describe the identification of a conserved arginine containing motif, called the "Win" or WDR5 interaction motif, that is essential for the assembly and H3K4 dimethylation activity of the MLL1 core complex. Here we present a 1.7-A crystal structure of WDR5 bound to a peptide derived from the MLL1 Win motif. Our results show that Arg-3765 of MLL1 is bound in the same arginine binding pocket on WDR5 that was previously suggested to bind histone H3. Thermodynamic binding experiments show that the MLL1 Win peptide is preferentially recognized by WDR5. These results are consistent with a model in which WDR5 recognizes Arg-3765 of MLL1, which is essential for the assembly and enzymatic activity of the MLL1 core complex.  相似文献   

19.
Activation of G protein-coupled receptors (GPCRs) originates in ligand-induced protein conformational changes that are transmitted to the cytosolic receptor surface. In the photoreceptor rhodopsin, and possibly other rhodopsin-like GPCRs, protonation of a carboxylic acid in the conserved E(D)RY motif at the cytosolic end of transmembrane helix 3 (TM3) is coupled to receptor activation. Here, we have investigated the structure of synthetic peptides derived from rhodopsin TM3. Polarized FTIR spectroscopy reveals a helical structure of a 31-mer TM3 peptide reconstituted into PC vesicles with a large tilt of 40-50 degrees of the helical axis relative to the membrane normal. Helical structure is also observed for the TM3 peptide in detergent micelles and depends on pH, especially in the C-terminal sequence. In addition, the fluorescence emission of the single tyrosine of the D(E)RY motif in the TM3 peptide exhibits a pronounced pH sensitivity that is abolished when Glu is replaced by Gln, demonstrating that protonation of the conserved Glu side chain affects the structure in the environment of the D(E)RY motif of TM3. The pH regulation of the C-terminal TM3 structure may be an intrinsic feature of the E(D)RY motif in other class I receptors, allowing the coupling of protonation and conformation of membrane-exposed residues in full-length GPCRs.  相似文献   

20.
Randomized peptide sequences displayed at the surface of filamentous phages are often used to select antibody ligands. The selected sequences are generally further used in the form of synthetic peptides; however, as such, their affinity for the selecting antibody is extremely variable and factors influencing this affinity have not been fully deciphered. We have used an f88.4 phage-displayed peptide library to identify ligands of mAb 11E12, an antibody reactive to human cardiac troponin I. A majority of the sequences thus selected showed a (T/A/I/L) EP(K/R/H) motif, homologous to the Y-TEPH motif identified by multiple peptide synthesis as the critical motif recognized by mAb 11E12 in the peptide epitope. A set of 15-mer synthetic peptides derived from the phage-selected sequences was used in BIACORE to characterize their interaction with mAb 11E12. Most peptides exhibited affinities in the 7-26 nM range. These affinities represented, however, only 1.9-7. 5% of the affinity of the 15-mer peptide epitope. In circular dichroism experiments, the peptide epitope showed a propensity to have some stabilized conformation, whereas a low-affinity peptide selected by phage-display did not. To try to decipher the molecular basis of this difference in affinity, new peptides were prepared by grafting the N- or the C-terminal sequence of the peptide epitope to the Y-TEPK motif of a low-affinity peptide selected by phage-display. These hybrid peptides showed marked increases both in affinity (as assessed using BIACORE) and in inhibitory potency (as assessed in competition ELISA), compared with the parent sequence. Thus, the sequences flanking the motif, although not containing critical residues, convey some determinants necessary for high affinity. The affinity of a given peptide strongly depends on its capacity to maintain the antigenically reactive structure it has on the phage, implying that it is impossible to predict whether high- or low-affinity peptides will be obtained from phage display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号