首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Abstract

The acid- and thermostable Sac7d is a small, non-specific DNA-binding protein of the hyperthermophile archaea Sulfolobus acidocaldarius. In this study, Sac7d was employed as a structural unit in the design of a thermostable protein containing two putative DNA-binding domains. By linking two Sac7d proteins together and comparing the DNA interaction of dimer to that of monomer, this study may provide structural insights into other dimeric DNA-binding proteins. The engineered protein, Sac7dK66C, was over-expressed and purified. Dimeric Sac7d was obtained by cross-linking two mutant Sac7d molecules through the C-terminal disulfide bond. Thermal stability and DNA-binding ability of dimeric Sac7d were assessed and compared to those of wild type Sac7d by gel retardation assay, circular dichroism spectroscopy, and crystallization experiments. Dimeric Sac7d was shown to be equally thermostable as wild type, and its ability to stabilize DNA duplex is the same as wild type. However, the interaction of dimeric Sac7d with DNA diverged from that of wild type, suggesting different DNA-binding modes for dimeric Sac7d. In addition, a large difference in extinction coefficient was observed in all dimer/DNA CD spectra, which was reminiscent of the spectrum of ψ-DNA. Conjugation of various chemical groups to mutant Sac7d is possible through the C-terminal thiol group. This offers a possible approach in the design of a thermostable biomolecule with novel functions.  相似文献   

2.
3.
4.
Liu YF  Zhang N  Liu X  Wang X  Wang ZX  Chen Y  Yao HW  Ge M  Pan XM 《PloS one》2012,7(4):e34986
The Sac10b protein family is regarded as a family of DNA-binding proteins that is highly conserved and widely distributed within the archaea. Sac10b family members are typically small basic dimeric proteins that bind to DNA with cooperativity and no sequence specificity and are capable of constraining DNA negative supercoils, protecting DNA from Dnase I digestion, and do not compact DNA obviously. However, a detailed understanding of the structural basis of the interaction of Sac10b family proteins with DNA is still lacking. Here, we determined the crystal structure of Mth10b, an atypical member of the Sac10b family from Methanobacterium thermoautotrophicum ΔH, at 2.2 Å. Unlike typical Sac10b family proteins, Mth10b is an acidic protein and binds to neither DNA nor RNA. The overall structure of Mth10b displays high similarity to its homologs, but three pairs of conserved positively charged residues located at the presumed DNA-binding surface are substituted by non-charged residues in Mth10b. Through amino acids interchanges, the DNA-binding ability of Mth10b was restored successfully, whereas the DNA-binding ability of Sso10b, a typical Sac10b family member, was weakened greatly. Based on these results, we propose a model describing the molecular mechanism underlying the interactions of typical Sac10b family proteins with DNA that explains all the characteristics of the interactions between typical Sac10b family members and DNA.  相似文献   

5.
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.  相似文献   

6.
Dostál L  Chen CY  Wang AH  Welfle H 《Biochemistry》2004,43(30):9600-9609
Members of the Sso7d/Sac7d protein family and other related proteins are believed to play an important role in DNA packaging and maintenance in archeons. Sso7d/Sac7d are small, abundant, basic, and nonspecific DNA-binding proteins of the hyperthermophilic archeon Sulfolobus. Structures of several complexes of Sso7d/Sac7d with DNA octamers are known. These structures are characterized by sequence unspecific minor groove binding of the proteins and sharp kinking of the double helix. Corresponding Raman vibrational signatures have been identified in this study. A Raman spectroscopic analysis of Sac7d binding to the oligonucleotide decamer d(GAGGCGCCTC)(2) reveals large conformational perturbations in the DNA structure upon complex formation. Perturbed Raman bands are associated with the vibrational modes of the sugar phosphate backbone and frequency shifts of bands assigned to nucleoside vibrations. Large changes in the DNA backbone and partial B- to A-form DNA transitions are indicated that are closely associated with C2'-endo/anti to C3'-endo/anti conversion of the deoxyadenosyl moiety upon Sac7d binding. The major spectral feature of Sac7d binding is kinking of the DNA. Raman markers of minor groove binding do not largely contribute to spectral differences; however, clear indications for minor groove binding come from G-N2 and G-N3 signals that are supported by Trp24 features. Trp24 is the only tryptophan present in Sac7d and binds to guanine N3, as has been demonstrated clearly in X-ray structures of Sac7d-DNA complexes. No changes of the Sac7d secondary structure have been detected upon DNA binding.  相似文献   

7.
8.
The DNA-binding protein Ssh10b from the hyperthermophilic archaeon Sulfolobus shibatae is a member of the Sac10b family, which has been speculated to be involved in the organization of the chromosomal DNA in Archaea. Ssh10b affects the DNA topology in a temperature dependent fashion that has not been reported for any other DNA-binding proteins. Heteronuclear NMR and site-directed mutagenesis were used to analyze the structural basis of the temperature-dependent Ssh10b-DNA interaction. The data analysis indicates that two forms of Ssh10b homodimers co-exist in solution, and the slow cis-trans isomerization of the Leu61-Pro62 peptide bond is the key factor responsible for the conformational heterogeneity of the Ssh10b homodimer. The T-form dimer, with the Leu61-Pro62 bond in the trans conformation, dominates at higher temperature, whereas population of the C-form dimer, with the bond in the cis conformation, increases on decreasing the temperature. The two forms of the Ssh10b dimer show the same DNA binding site but have different conformational features that are responsible for the temperature-dependent nature of the Ssh10b-DNA interaction.  相似文献   

9.
The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.  相似文献   

10.
Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (~60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (~50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (~80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA.  相似文献   

11.
The adenovirus DNA-binding protein (DBP) binds cooperatively to single-stranded DNA (ssDNA) and stimulates both initiation and elongation of DNA replication. DBP consists of a globular core domain and a C-terminal arm that hooks onto a neighboring DBP molecule to form a stable protein chain with the DNA bound to the internal surface of the chain. This multimerization is the driving force for ATP-independent DNA unwinding by DBP during elongation. As shown by x-ray diffraction of different crystal forms of the C-terminal domain, the C-terminal arm can adopt different conformations, leading to flexibility in the protein chain. This flexibility is a function of the hinge region, the part of the protein joining the C-terminal arm to the protein core. To investigate the function of the flexibility, proline residues were introduced in the hinge region, and the proteins were purified to homogeneity after baculovirus expression. The mutant proteins were still able to bind ss- and double-stranded DNA with approximately the same affinity as wild type, and the binding to ssDNA was found to be cooperative. All mutant proteins were able to stimulate the initiation of DNA replication to near wild type levels. However, the proline mutants could not support elongation of DNA replication efficiently. Even the elongation up to 26 nucleotides was severely impaired. This defect was also seen when DNA unwinding was studied. Binding studies of DBP to homo-oligonucleotides showed an inability of the proline mutants to bind to poly(dA)(40), indicating an inability to adapt to specific DNA conformations. Our data suggest that the flexibility of the protein chain formed by DBP is important in binding and unwinding of DNA during adenovirus DNA replication. A model explaining the need for flexibility of the C-terminal arm is proposed.  相似文献   

12.
13.
Intersubunit disulfide-bonded lambda-Cro protein   总被引:2,自引:0,他引:2  
Site-directed mutagenesis has been employed to substitute cysteine for valine at position 55, which is located on the dimer interface of the Cro protein of bacteriophage lambda. It has been found that the Cys55 Cro protein (Cro VC55) spontaneously forms a stable disulfide-bonded dimer in the absence of a reducing agent. UV-CD and NMR data showed that the mutant protein retains the conformation of the wild Cro protein and has acquired significant heat-stability. However, its specific DNA-binding activity is reduced several times compared with that of the wild Cro. Photochemically induced dynamic nuclear polarization (CIDNP) spectra demonstrated that a conformational change of Cro VC55 did not take place upon the formation of a complex with OR3, in contrast to the case of the wild Cro. These data suggest that the induced fitting, like loosening, of the two subunits of the wild Cro dimer contributes to the enhancement of its affinity to its operator DNA, which results in a specific interaction between Cro and OR3.  相似文献   

14.
15.
16.
17.
The C-terminal domains of yeast structural maintenance of chromosomes (SMC) proteins were previously shown to bind double-stranded DNA, which generated the idea of the antiparallel SMC heterodimer, such as the SMC1/3 dimer, bridging two DNA molecules. Analysis of bovine SMC1 and SMC3 protein domains now reveals that not only the C-terminal domains, but also the coiled-coil region, binds DNA, while the N terminus is inactive. Duplex DNA and DNA molecules with secondary structures are highly preferred substrates for both the C-terminal and coiled-coil domains. Contrasting other cruciform DNA-binding proteins like HMG1, the SMC3 C-terminal and coiled-coil domains do not bend DNA, but rather prevent bending in ring closure assays. Phosphatase, exonuclease, and ligase assays showed that neither domain renders DNA ends inaccessible for other enzymes. These observations allow modifications of models for SMC-DNA interactions.  相似文献   

18.
19.
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号