首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Responses to glyceryl trinitrate/nitroglycerin (GTN), S-nitrosoglutathione (GSNO), and sodium nitrite were compared in the intact chest rat. The iv injections of GTN, sodium nitrite, and GSNO produced dose-dependent decreases in pulmonary and systemic arterial pressures. In as much as cardiac output was not reduced, the decreases in pulmonary and systemic arterial pressures indicate that GTN, sodium nitrite, and GSNO have significant vasodilator activity in the pulmonary and systemic vascular beds in the rat. Responses to GTN were attenuated by cyanamide, but not allopurinol, whereas responses to nitrite formed by the metabolism of GTN were attenuated by allopurinol and cyanamide. The results with allopurinol and cyanamide suggest that only mitochondrial aldehyde dehydrogenase is involved in the bioactivation of GTN, sodium nitrite, and GSNO, whereas both pathways are involved in the bioactivation of nitrite anion in the intact rat. The comparison of vasodilator activity indicates that GSNO and GTN are more than 1000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures in the rat. Following administration of 1H-[1,2,4]-oxadizaolo[4,3-]quinoxaline-1-one (ODQ), responses to GTN were significantly attenuated, indicating that responses are mediated by the activation of soluble guanylyl cyclase. These data suggest that the reduction of nitrite to nitric oxide formed from the metabolism of GTN, cannot account for the vasodilator activity of GTN in the intact rat and that another mechanism; perhaps the formation of an S-NO, may mediate the vasodilator response to GTN in this species.  相似文献   

2.
Nitroglycerin (GTN) produces a dilation of vascular smooth muscle by releasing NO through a putative GTN-converting step. However, the response to GTN is markedly attenuated after prolonged or repeated exposure, resulting in tolerance. We investigated the mechanisms of GTN tolerance, employing exogenous and endogenous NO in rat aorta. In endothelium-denuded rat aortic strips, the GTN-induced relaxation response was attenuated by preceding exposure to either GTN or sodium nitroprusside (SNP). In contrast, the SNP-induced relaxation response was not affected by this protocol of GTN or SNP preexposure. Preincubation of aortic strips with lipopolysaccharide (LPS) +/- L-arginine for 12 h also caused attenuation of GTN-induced responses such as relaxation, cGMP production and nitrite/nitrate formation. The attenuating effect of LPS abolished in aortic strips co-incubated with LPS and cycloheximide or N(G)-nitro-L-arginine. These results suggest that GTN tolerance is predominantly associated with the reduction of NO release from GTN, which is caused through inhibition of a GTN-converting step due to preceding exposure to NO itself.  相似文献   

3.
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC(50) values of 42 +/- 2.9 and 3.1 +/- 0.4 microm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.  相似文献   

4.
Glyceryl trinitrate (GTN) 2 mM was quantitatively converted into its 1 and 2 mononitrate derivatives by Geotrichum candidum, with consumption of the nitrite ions produced. The conversion proceeded at a rate independent of the addition of either organic carbon or organic nitrogen sources. Eight batches of nitrate ester, which were added every 24 hours, were successfully converted as far as during the bioconversion process GTN concentration did not exceed 2 mM. When those limiting conditions were not observed, dramatic toxicity of GTN was noticed.  相似文献   

5.
Glyceryl trinitrate (GTN) and pentaerythrityl tetranitrate (PETN) are among the most known organic nitrates that are used in cardiovascular therapy as vasodilators. However, anti-ischemic therapy with organic nitrates is complicated by the induction of nitrate tolerance. When nitrates are metabolized to release nitric oxide (NO), there is considerable coproduction of superoxide radicals in vessels leading to inactivation of NO. However, nitrate-induced increase of superoxide radical formation in vivo has not been reported. In this work, the authors studied the in vivo formation of superoxide radicals induced by treatment with PETN or GTN and determined the antioxidant effect of vitamin C. The formation of superoxide radicals was determined by the oxidation of 1-hydroxy-3-carboxy-pyrrolidine (CP-H) to paramagnetic 3-carboxy-proxyl (CP) using electron spin resonance spectroscopy. CP-H (9 mg/kg intravenous bolus and 0.225 mg/kg per minute continuous intravenous GTN or PETN 130 microg/kg) were infused into anesthetized rabbits. Every 5 min, blood samples were obtained from Arteria carotis to measure the CP formation. Both PETN and GTN showed similar vasodilator effects. Formation of CP in blood after infusions of GTN and PETN were 2.0+/-0.4 microM and 0.98+/-0.23 microM, respectively. Pretreatment with 30 mg/kg vitamin C led to a significant decrease in CP formation: 0.27+/-0.14 microM (vitamin C plus GTN) and 0.34+/-0.15 microM (vitamin C plus PETN). Pretreatment of animals with superoxide dismutase (15,000 units/kg) significantly inhibited nitrate-induced nitroxide formation. Therefore, in vivo infusion of GTN or PETN in rabbits increased the formation of superoxide radicals in the vasculature. PETN provoked a minimal stimulation of superoxide radical formation without simultaneous development of nitrate tolerance. The data suggest that the formation of superoxide radicals induced by organic nitrate correlates with the development of nitrate tolerance. The effect of vitamin C on CP formation leads to the conclusion that vitamin C can be used as an effective antioxidant for protection against nitrate-induced superoxide radical formation in vivo.  相似文献   

6.
From conditions for production in Fusarium oxysporum of the unique nitrate/nitrite-inducible cytochrome P-450, tentatively called P-450dNIR, it was expected that the fungus is capable of metabolizing nitrate dissimilatively. Here we report that F. oxysporum exhibits a distinct denitrifying ability which results in the anaerobic evolution of nitrous oxide (N2O) from nitrate or nitrite. Comparison of the cell growth during denitrification indicated that the dissimilatory reduction of nitrate to nitrite is an energetically favorable process in F. oxysporum; however, further reduction of nitrite to N2O might be energy-exhausting and may function as a detoxification mechanism. A potent nitrite reductase activity to form N2O could be reconstituted by combination of the cell-free extract prepared from the denitrifying cells and an NADH-phenadinemethosulfate-dependent reducing system. The activity was strongly inhibited by carbon monoxide, cyanide, oxygen (O2), and the antibody against P-450dNIR. The results, along with those concerning inducing conditions of P-450dNIR, were highly indicative that the cytochrome is involved in the denitrifying nitrite reduction. This work has thus presented not only the first demonstration that a eukaryote exhibits a marked denitrifying ability, but also the first instance of a cytochrome P-450 that is involved in a reducing reaction with a distinct physiological significance against a hydrophilic, inorganic substrate.  相似文献   

7.
Formation of Nitrate from 3-Nitropropionate by Aspergillus flavus   总被引:1,自引:1,他引:0       下载免费PDF全文
Extracts of the hyphae of a nitrifying strain of Aspergillus flavus formed nitrite and nitrate from 3-nitropropionate. Nicotinamide adenine dinucleotide phosphate and nicotinamide adenine dinucleotide enhanced the production of nitrate but not nitrite, whereas cysteine and diethyldithiocarbamate increased nitrite but diminished nitrate synthesis. Quinacrine reduced the extent of conversion of the nitro compound to nitrite and nitrate, but only the inhibition of nitrite formation was completely reversed by flavine coenzymes. Molecular oxygen was essential for this part of the nitrification sequence. 3-Chloropropionate stimulated the oxidation of nitrite by hyphae or enzyme preparations. Although the fungus contained a noncytochrome-linked nitrite-oxidizing enzyme, partially purified preparations free of this enzyme formed both nitrite and nitrate from 3-nitropropionate. Possible mechanisms of this latter stage of heterotrophic nitrification are discussed.  相似文献   

8.
Animals treated with nitric oxide synthase (NOS) inhibitors exhibit marked hypersensitivity to the blood pressure lowering effects of exogenous nitric oxide (NO) donors. We used this model as a sensitive index to evaluate the relative importance of reduced biotransformation of glyceryl trinitrate (GTN) to NO in the development of nitrate tolerance. NOS-blockade hypertension using N(G)-nitro-L-arginine methyl ester (L-NAME) caused a marked enhancement of the mean arterial pressure (MAP) decrease mediated by GTN in nontolerant rats. However, even large doses of GTN were unable to change the MAP in GTN-tolerant, NOS-blockade hypertensive animals. In contrast, the MAP responses to the spontaneous NO donor sodium nitroprusside (SNP) were completely unaltered in either tolerant rats or tolerant NOS-blockade hypertensive animals, indicating that NO-dependent vasodilatory mechanisms remain intact despite the development of GTN tolerance. The MAP-lowering effects of GTN in NOS-blockade hypertensive animals were restored 48 h after cessation of chronic GTN exposure. These alterations in the pharmacodynamic response to GTN during tolerance development and reversal were associated with parallel changes in the pattern of GTN metabolite formation, suggesting that the activity of one or more enzymes involved in nitrate metabolism was altered as a consequence of chronic GTN exposure. These findings suggest that the vasodilation resulting from the vascular biotransformation of GTN to NO (or a closely related species) is severely compromised in nitrate-tolerant animals, and that although other mechanisms may contribute to the vascular changes observed following the development of GTN tolerance, decreased GTN bioactivation is likely the most important.  相似文献   

9.
Xanthine oxidoreductase catalyses the anaerobic reduction of glyceryl trinitrate (GTN), isosorbide dinitrate and isosorbide mononitrate to inorganic nitrite using xanthine or NADH as reducing substrates. Reduction rates are much faster with xanthine as reducing substrate than with NADH. In the presence of xanthine, urate is produced in essentially 1:1 stoichiometric ratio with inorganic nitrite, further reduction of which is relatively slow. Organic nitrates were shown to interact with the FAD site of the enzyme. In the course of reduction of GTN, xanthine oxidoreductase was progressively inactivated by conversion to its desulpho form. It is proposed that xanthine oxidoreductase is one of several flavoenzymes that catalyse the conversion of organic nitrate to inorganic nitrite in vivo. Evidence for its further involvement in reduction of the resulting nitrite to nitric oxide is discussed.  相似文献   

10.
Macrophage synthesis of nitrite and nitrate after activation by BCG infection or by treatment in vitro with both T cell-derived (lymphokines (LK) or recombinant murine interferon-gamma (IFN-gamma] and bacterial (lipopolysaccharide (LPS) and heat-killed bacillus Calmette-Guerin (hk BCG] agents was studied by using macrophages from C3H/He and C3H/HeJ mice. Spleen and peritoneal macrophages isolated from BCG-infected donors that were producing nitrate continued to synthesize nitrite and nitrate in culture. LPS treatment in vitro (25 or 50 micrograms/ml) additionally increased this nitrite/nitrate synthesis. Thioglycolate-elicited macrophages from non-infected C3H/HeJ mice treated with LK also produced nitrite/nitrate, and concurrent LPS (0.1 to 50 micrograms/ml) treatment resulted in enhanced synthesis. Recombinant IFN-gamma also stimulated nitrite/nitrate synthesis by C3H/He and CeH/HeJ macrophages as did LPS (C3H/He only) and hk BCG. When given concurrently with either LPS or hk BCG, IFN-gamma enhanced C3H/He and C3H/HeJ macrophage nitrite/nitrate synthesis over that produced by macrophages treated with either LPS or hk BCG alone. Macrophages activated in vitro exhibited a 4 to 12 hr lag time before engaging in nitrite/nitrate synthesis, which then proceeded for 36 to 42 hr at linear rates. Daily medium renewal did not alter the synthesis kinetics but increased the total amount of nitrite/nitrate produced. Nitrate and nitrite were stable under the conditions of culture and when added did not influence additional macrophage synthesis. Taken together, these results indicate that T cell lymphokines and IFN-gamma are powerful modulators of macrophage nitrite/nitrate synthesis during BCG infection and in vitro, and nitrite/nitrate synthesis appears to be common property of both primed and fully activated macrophage populations.  相似文献   

11.
Abstract: A total of 28 nitrate-reducing bacteria were isolated from marine sediment (Mediterranean coast of France) in which dissimilatory reduction of nitrate to ammonium (DRNA) was estimated as 80% of the overall nitrate consumption. Thirteen isolates were considered as denitrifiers and ten as dissimilatory ammonium producers. 15N ammonium production from 15N nitrate by an Enterobacter sp. and a Vibrio sp., the predominant bacteria involved in nitrate ammonification in marine sediment, was characterized in pure culture studies. For both strains studied, nitrate-limited culture (1 mM) produced ammonium as the main product of nitrate reduction (> 90%) while in the presence of 10 mM nitrate, nitrite was accumulated in the spent media and ammonia production was less efficient. Concomitantly with the dissimilation of nitrate to nitrite and ammonium the molar yield of growth on glucose increased. Metabolic products of glucose were investigated under different growth conditions. Under anaerobic conditions without nitrate, ethanol was formed as the main product; in the presence of nitrate, ethanol disappeared and acetate increased concomitantly with an increased amount of ammonium. These results indicate that nitrite reduction to ammonium allows NAD regeneration and ATP synthesis through acetate formation, instead of ethanol formation which was favoured in the absence of nitrate.  相似文献   

12.
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.  相似文献   

13.
It is postulated that the organic nitrate vasodilator agents, including glyceryl trinitrate (GTN) and isosorbide dinitrate (ISDN), are prodrugs, such that biotransformation to the active inorganic metabolite, nitric oxide (NO), occurs prior to the onset of vasodilation. Furthermore, it is proposed that organic nitrate tolerance in vascular tissue involves decreased formation of NO. To test this latter hypothesis, we examined vasodilation induced by NO, GTN, and ISDN in non-tolerant, GTN-tolerant, and ISDN-tolerant rabbit aortic rings (RARs). Isolated RARs were contracted submaximally with phenylephrine; the time of onset of relaxation and percent relaxation of tissue were determined in response to NO (0.3 microM), GTN (0.03 microM), and ISDN (0.12 microM) before and after a 1-h treatment with 500 microM GTN, 500 microM ISDN, or buffer only. The data demonstrated that the response to NO was not changed in GTN-tolerant and ISDN-tolerant tissues, in which there was virtually no GTN-induced or ISDN-induced relaxation. These results are consistent with the postulate that organic nitrate vasodilator drugs must undergo biotransformation to NO before vasodilation can occur and that the mechanism of organic nitrate tolerance involves decreased formation of NO.  相似文献   

14.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N(2)O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N(2)O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N(2)O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 microM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 micromol N.m(-2).h(-1) with nitrite but only 180 micromol N.m(-2).h(-1) with nitrate. The ratios of rates of nitrous oxide production and denitrification (N(2)O/N(2) x 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N(2) formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N(2) via N(2)O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N(2)O as the end product. Consideration of free-energy changes during N(2)O formation led to the conclusion that N(2)O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N(2)O in high-nutrient-load estuaries.  相似文献   

15.
Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.  相似文献   

16.
Mitochondrial aldehyde dehydrogenase (ALDH2) may be involved in the biotransformation of glyceryl trinitrate (GTN), and the inactivation of ALDH2 by GTN may contribute to the phenomenon of nitrate tolerance. We studied the GTN-induced inactivation of ALDH2 by UV/visible absorption spectroscopy. Dehydrogenation of acetaldehyde and hydrolysis of p-nitrophenylacetate (p-NPA) were both inhibited by GTN. The rate of inhibition increased with the GTN concentration and decreased with the substrate concentration, indicative of competition between GTN and the substrates. Inactivation of p-NPA hydrolysis was greatly enhanced in the presence of NAD(+), and, to a lesser extent, in the presence of NADH. In the presence of dithiothreitol (DTT) inactivation of ALDH2 was much slower. Dihydrolipoic acid (LPA-H(2)) was less effective than DTT, whereas glutathione, cysteine, and ascorbate did not protect against inactivation. When DTT was added after complete inactivation, dehydrogenase reactivation was quite modest (< or =16%). The restored dehydrogenase activity correlated inversely with the GTN concentration but was hardly affected by the concentrations of acetaldehyde or DTT. Partial reactivation of dehydrogenation was also accomplished by LPA-H(2) but not by GSH. We conclude that, in addition to the previously documented reversible inhibition by GTN that can be ascribed to the oxidation of the active site thiol, there is an irreversible component to ALDH inactivation. Importantly, ALDH2-catalyzed GTN reduction was partly inactivated by preincubation with GTN, suggesting that the inactivation of GTN reduction is also partly irreversible. These observations are consistent with a significant role for irreversible inactivation of ALDH2 in the development of nitrate tolerance.  相似文献   

17.
18.
Under anaerobic conditions, Propionibacterium pentosaceum reduces nitrate to nitrite until nitrate is exhausted from the medium when nitrite is converted into N2 or N2O. In the presence of nitrate, fermentation patterns for lactate, glycerol and pyruvate were different from those obtained during anaerobic growth without an inorganic electron acceptor. In the presence of these substrates, a drastic decrease in propionate formation was observed, some pyruvate accumulated during growth with lactate, and acetate was produced from glycerol. Acetate production from lactate and pyruvate was not influenced by the presence of nitrate. Furthermore, CO2 was produced by citric acid cycle activity. The fermentation pattern during nitrite reduction resembled that of P. pentosaceum grown anaerobically without an inorganic electron acceptor. Nitrits has a toxic effect, since bacteria inoculated into a medium with 9 mM-nitrite failed to grow. The cytochrome spectrum of anaerobically grown P. pentosaceum was similar with and without nitrate. In membrane fractions of bacteria grown anaerobically with nitrate, cytochrome b functioned in the transfer of electrons from lactate, glycerol I-phosphate and NADH to nitrate. Molar growth yeilds were increased in the presence of nitrate, indicating an increased production of ATP. This could be explained by citric acid cycle activity, and by ocidative phosphorylation coupled to nitrate reduction. Assuming that I mol ATP is formed in the electron transfer from lactate or glycerol I-phosphate to nitrate, and that 2 mol ATP are formed in the electron transfer from NADH to nitrate, YATP values (g dry wt bacteria/mol ATP) were obtained of between 5-0 and 12-6. The higher YATP values were similar to those obtained during anaerobic growth without an inorganic electron acceptor. This supports the assumptions about the efficiency of oxidative phosphorylation for electron transport to nitrate. Low YAPT values were found when high concentrations of nitrite (15 to 50 mM) accumulated, and were probably due to the toxic effect of nitrite.  相似文献   

19.
Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conservation, whereas nitrite reductase seems to be a cytosolic enzyme involved in NADH reoxidation. Syntheses of both enzymes are inhibited by oxygen and induced to greater or lesser degrees by nitrate or nitrite, respectively. In whole cells, nitrite reduction is inhibited by nitrate and also by high concentrations of nitrite (> or = 10 mM). Nitrite did not influence nitrate reduction. Two possible mechanisms for the inhibition of nitrite reduction by nitrate that are not mutually exclusive are discussed. (i) Competition for NADH nitrate reductase is expected to oxidize the bulk of the NADH because of its higher specific activity. (ii) The high rate of nitrate reduction could lead to an internal accumulation of nitrite, possibly the result of a less efficient nitrite reduction or export. So far, we have no evidence for the presence of other dissimilatory or assimilatory nitrate or nitrite reductases in S. carnosus.  相似文献   

20.
Nitric oxide (NO) has been implicated in the pathogenesis of migraine and treatment with its exogenous donor glyceryl trinitrate (GTN) represents widely accepted experimental "migraine model". In this study, glyceryl trinitrate was administered intraperitoneally to carps, serum nitrite and nitrate levels were determined, permeability of blood-brain barrier was investigated, and histological changes of brain tissue were analyzed. Serum nitrite and nitrate levels displayed characteristic biphasic pattern with moderate initial increase and maximal terminal increase, suggesting the GTN-induced endogenous NO synthesis. Increased permeability of the blood-brain barrier in GTN-treated animals was determined based on Evans blue capillary leakage into the brain tissue. Histological analysis revealed changes consistent with vasodilatation and oedema. Our study strongly supports the importance of the NO role in the pathogenesis of migraine attacks and increase in blood-brain barrier permeability during the attack. The study has also provided evidence that this mechanism of action is conserved to the lower vertebrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号