首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitral annular (MA) excursion during diastole encompasses a volume that is part of total left ventricular (LV) filling volume (LVFV). Altered excursion or area variation of the MA due to changes in preload or inotropic state could affect LV filling. We hypothesized that changes in LV preload and inotropic state would not alter the contribution of MA dynamics to LVFV. Six sheep underwent marker implantation in the LV wall and around the MA. After 7-10 days, biplane fluoroscopy was used to obtain three-dimensional marker dynamics from sedated, closed-chest animals during control conditions, inotropic augmentation with calcium (Ca), preload reduction with nitroprusside (N), and vena caval occlusion (VCO). The contribution of MA dynamics to total LVFV was assessed using volume estimates based on multiple tetrahedra defined by the three-dimensional marker positions. Neither the absolute nor the relative contribution of MA dynamics to LVFV changed with Ca or N, although MA area decreased (Ca, P < 0.01; and N, P < 0.05) and excursion increased (Ca, P < 0.01). During VCO, the absolute contribution of MA dynamics to LVFV decreased (P < 0.001), based on a reduction in both area (P < 0.001) and excursion (P < 0.01), but the relative contribution to LVFV increased from 18 +/- 4 to 45 +/- 13% (P < 0.001). Thus MA dynamics contribute substantially to LV diastolic filling. Although MA excursion and mean area change with moderate preload reduction and inotropic augmentation, the contribution of MA dynamics to total LVFV is constant with sizeable magnitude. With marked preload reduction (VCO), the contribution of MA dynamics to LVFV becomes even more important.  相似文献   

2.
The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs. 41 +/- 10 ml/m(2) (P < 0.001), 46 +/- 14 vs. 61 +/- 14 ml/m(2) (P < 0.001), and 216 +/- 90 vs. 541 +/- 248 ml/s (P < 0.001), respectively. Among PAH patients, stroke volume did not correlate to right ventricular end-diastolic volume or mean pulmonary arterial pressure but did correlate to left ventricular end-diastolic volume (r = 0.62, P < 0.001). Leftward interventricular septum curvature was correlated to left ventricular filling rate (r = 0.64, P < 0.001) and left ventricular end-diastolic volume (r = 0.65, P < 0.001). In contrast, left atrial filling was normal and not correlated to left ventricular end-diastolic volume. In PAH patients, ventricular interaction mediated by the interventricular septum impairs left ventricular filling, contributing to decreased stroke volume.  相似文献   

3.
With respiration, right ventricular end-diastolic volume fluctuates. We examined the importance of these right ventricular volume changes on left ventricular function. In six mongrel dogs, right and left ventricular volumes and pressures and esophageal pressure were simultaneously measured during normal respiration, Valsalva maneuver, and Mueller maneuver. The right and left ventricular volumes were calculated from cineradiographic positions of endocardial radiopaque markers. Increases in right ventricular volume were associated with changes in the left ventricular (LV) pressure-volume relationship. With normal respiration, right ventricular end-diastolic volume increased 2.3 +/- 0.7 ml during inspiration, LV transmural diastolic pressure was unchanged, and LV diastolic volume decreased slightly. This effect was accentuated by the Mueller maneuver; right ventricular end-diastolic volume increased 10.4 +/- 2.3 ml (P less than 0.05), while left ventricular end-diastolic pressure increased 3.6 mmHg (P less than 0.05) without a significant change in left ventricular end-diastolic volume. Conversely, with a Valsalva maneuver, right ventricular volume decreased 6.5 +/- 1.2 ml (P less than 0.05), and left ventricular end-diastolic pressure decreased 2.2 +/- 0.5 mmHg (P less than 0.05) despite an unchanged left ventricular end-diastolic volume. These changes in the left ventricular pressure-volume relationship, secondary to changes in right ventricular volumes, are probably due to ventricular interdependence. Ventricular interdependence may also be an additional factor for the decrease in left ventricular stroke volume during inspiration.  相似文献   

4.
This study questioned the effect of living and training at moderate altitude on cardiac morphological and functional adaptations and tested the incidences of potential specific adaptations compared with aerobic sea level training on maximal left ventricular performance. Sea level-native rats were randomly assigned to N (living in normoxia), NT (living and training 5 days/wk for 5 wk in normoxia), CH (living in hypoxia, 2,800 m), and CHT (living and training 5 days/wk for 5 wk in hypoxia, 2,800 m) groups. Cardiac adaptations were evaluated throughout the study period by Doppler echocardiography. Maximal stroke volume (LV(SVmax)) was measured during volume overloading before and after the study period. Finally, at the end of the study period, passive pressure-volume relationships on isolated heart and cardiac weighing were obtained. Altitude training resulted in a specific left ventricular (LV) remodeling compared with NT, characterized by an increase in wall thicknesses without any alteration in internal dimensions. These morphological adaptations associated with hypoxia-induced alterations in pulmonary outflow and preload conditions led to a decrease in LV filling and subsequently no improvement in LV performance during resting physiological conditions in CHT compared with NT. Such a lack of improvement was confirmed during volume overloading that simulated maximal effort (LV(SVmax) pretest: NT = 0.58 +/- 0.05, CHT = 0.57 +/- 0.08 ml; posttest: NT = 0.72 +/- 0.06, CHT = 0.58 +/- 0.07 ml; NT vs. CHT in posttest session, P < 0.05). Maximal aerobic velocities increased to the same extent in NT and CHT rats despite marked polycythemia in the latter. The lack of LV(SVmax) improvement resulting from altitude training-induced cardiac morphological and functional adaptations could be responsible for this phenomenon.  相似文献   

5.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

6.
Enhanced left-ventricular (LV) compliance is a common adaptation to endurance training. This adaptation may have differential effects under conditions of altered venous return. The purpose of this investigation was to assess the effect of cardiac (un)loading on right ventricular (RV) cavity dimensions and LV volumes in endurance-trained athletes and normally active males. Eight endurance-trained (Vo(2max), 65.4 +/- 5.7 ml.kg(-1).min(-1)) and eight normally active (Vo(2max), 45.1 +/- 6.0 ml.kg(-1).min(-1)) males underwent assessments of the following: 1) Vo(2max), 2) orthostatic tolerance, and 3) cardiac responses to lower-body positive (0-60 mmHg) and negative (0 to -80 mmHg) pressures with echocardiography. In response to negative pressures, echocardiographic analysis revealed a similar decrease in RV end-diastolic cavity area in both groups (e.g., at -80 mmHg: normals, 21.4%; athletes, 20.8%) but a greater decrease in LV end-diastolic volume in endurance-trained athletes (e.g., at -80 mmHg: normals, 32.3%; athletes, 44.4%; P < 0.05). Endurance-trained athletes also had significantly greater decreases in LV stroke volume during lower-body negative pressure. During positive pressures, endurance-trained athletes showed larger increases in LV end-diastolic volume (e.g., at +60 mmHg; normals, 14.1%; athletes, 26.8%) and LV stroke volume, despite similar responses in RV end-diastolic cavity area (e.g., at +60 mmHg: normals, 18.2%; athletes, 24.2%; P < 0.05). This investigation revealed that in response to cardiac (un)loading similar changes in RV cavity area occur in endurance-trained and normally active individuals despite a differential response in the left ventricle. These differences may be the result of alterations in RV influence on the left ventricle and/or intrinsic ventricular compliance.  相似文献   

7.
Mitral annular (MA) and leaflet three-dimensional (3-D) dynamics were examined after circumferential phenol ablation of the MA and anterior mitral leaflet (AML) muscle. Radiopaque markers were sutured to the left ventricle, MA, and both mitral leaflets in 18 sheep. In 10 sheep, phenol was applied circumferentially to the atrial surface of the mitral annulus and the hinge region of the AML, whereas 8 sheep served as controls. Animals were studied with biplane video fluoroscopy for computation of 3-D mitral annular area (MAA) and leaflet shape. MAA contraction (MAACont) was determined from maximum to minimum value. Presystolic MAA (PS-MAACont) reduction was calculated as the percentage of total reduction occurring before end diastole. Phenol ablation decreased PS-MAACont (72 +/- 6 vs. 47 +/- 31%, P = 0.04) and delayed valve closure (31 +/- 11 vs. 57 +/- 25 ms, P = 0.017). In control, the AML had a compound sigmoid shape; after phenol, this shape was entirely concave to the atrium during valve closure. These data indicate that myocardial fibers on the atrial side of the valve influence the 3-D dynamic geometry and shape of the MA and AML.  相似文献   

8.
During acute pulmonary hypertension, both the pericardium and the right ventricle (RV) constrain left ventricular (LV) filling; therefore, pericardiotomy should improve LV function. LV, RV, and pericardial pressures and RV and LV dimensions and LV stroke volume (SV) were measured in six anesthetized dogs. The pericardium was closed, the chest was left open, and the lungs were held away from the heart. Data were collected at baseline, during pulmonary artery constriction (PAC), and after pericardiotomy with PAC maintained. PAC decreased SV by one-half. RV diameter increased, and septum-to-LV free wall diameter and LV area (our index of LV end-diastolic volume) decreased. Compared with during PAC, pericardiotomy increased LV area and SV increased 35%. LV and RV compliance (pressure-dimension relations) and LV contractility (stroke work-LV area relations) were unchanged. Although series interaction accounts for much of the decreased cardiac output during acute pulmonary hypertension, pericardial constraint and leftward septal shift are also important. Pericardiotomy can improve LV function in the absence of other sources of external constraint to LV filling.  相似文献   

9.
The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO?max): 58 ± 7 ml·kg?1·min?1] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.  相似文献   

10.
The conceptual design and development of a long-term, low-profile intracorporeal left ventricular assist device is a multifaceted project involving a series of technical, anatomic and physiologic considerations. Patients with severe left ventricular failure refractory to all other forms of therapy could benefit from such a device. Prior to fabrication of such a blood pump, consideration must be given to physiologic parameters of the projected patient population. The pump must be designed to meet physiologic demands and yet conform to the anatomic constraints posed by the patient population. We measured the body surface area (BSA) of a group of patients (n=50) and found the mean BSA for this group to be 1.804 +/- 0.161 m(2). Using 25 ml/m(2) as a stroke volume index indicative of left ventricular failure and a stroke volume index of 45 ml/m(2) as normal, distributions of stroke volumes (normal and in left ventricular failure) were plotted for a potential population and demonstrated that 63% of the projected population can be returned to normal by a pump with a stroke volume >/= 83 ml. Cadaver fitting studies established that 73% of the potential population can accommodate an ALVAD 10.8 cm in diameter. In-vitro tests demonstrated that a pump stroke volume >/= 83 ml could be achieved by the proposed pump with a 15 mmHg filling pressure at rates up to 125 B/min. A pusher-plate stroke of 0.56 inches would be necessary to provide a stroke volume >/= 83 ml. The percent of the patient population that could be served was determined by excluding those in whom the pump would not fit or in whom it would provide less than a normal resting stroke volume. Approximately 73% of the projected patient population would accommodate this pump and be returned to normal circulatory dynamics.  相似文献   

11.
Left ventricular (LV) filling deceleration time (DT) is determined by the sum of atrial and ventricular stiffnesses (KLA + KLV). If KLA, however, is close to zero, then DT would reflect KLV only. The purpose of this study was to quantify KLA during DT. In 15 patients, KLV was assessed, immediately after cardiopulmonary bypass, from E wave DT as derived from mitral tracings obtained by transesophageal echocardiography and computed according to a validated formula. In each patient, a left atrial (LA) volume curve was also obtained combining mitral and pulmonary vein (PV) cumulative flow plus LA volume measured at end diastole. Time-adjusted LA pressure was measured simultaneously with Doppler data in all patients. KLA was then calculated during the ascending limb of the V loop and during DT. LA volume decreased by 7.3 +/- 6.5 ml/m2 during the first of mitral DT, whereas LV volume increased 9.4 +/- 8.4 ml/m2 (both P < 0.001). There was a small amount of blood coming from the PV during the same time interval, with the cumulative flow averaging 3.2 +/- 2.4 ml/m(2) (P < 0.001). Mean LA pressure was 10.0 +/- 5.1 mmHg, and it did not change during DT [from 7.8 +/- 4.3 to 8.0 +/- 4.3 mmHg, not significant (NS)], making KLA, which averaged 0.46 +/- 0.39 mmHg/ml during the V loop, close to zero during DT [KLA(DT): from -0.002 +/- 0.08 to -0.001 +/- 0.031 mmHg/ml, NS]. KLV, as assessed noninvasively from DT, averaged 0.25 +/- 0.32 mmHg/ml. In conclusion, notwithstanding the significant decrement in LA volume, KLA does not change and can be considered not different from zero during DT. Thus KLA does not affect the estimation of KLV from Doppler parameters.  相似文献   

12.
Both chronic microgravity exposure and long-duration bed rest induce cardiac atrophy, which leads to reduced standing stroke volume and orthostatic intolerance. However, despite the fact that women appear to be more susceptible to postspaceflight presyncope and orthostatic hypotension than male astronauts, most previous high-resolution studies of cardiac morphology following microgravity have been performed only in men. Because female athletes have less physiological hypertrophy than male athletes, we reasoned that they also might have altered physiological cardiac atrophy after bed rest. Magnetic resonance imaging was performed in 24 healthy young women (32.1 +/- 4 yr) to measure left ventricular (LV) and right ventricular (RV) mass, volumes, and morphology accurately before and after 60 days of 6 degrees head-down tilt (HDT) bed rest. Subjects were matched and then randomly assigned to sedentary bed rest (controls, n = 8) or two treatment groups consisting of 1) exercise training using supine treadmill running within lower body negative pressure plus resistive training (n = 8), or 2) protein (0.45 g x kg(-1) x day(-1) increase) plus branched-chain amino acid (BCAA) (7.2 g/day) supplementation (n = 8). After sedentary bed rest without nutritional supplementation, there were significant reductions in LV (96 +/- 26 to 77 +/- 25 ml; P = 0.03) and RV volumes (104 +/- 33 to 86 +/- 25 ml; P = 0.02), LV (2.2 +/- 0.2 to 2.0 +/- 0.2 g/kg; P = 0.003) and RV masses (0.8 +/- 0.1 to 0.6 +/- 0.1 g/kg; P < 0.001), and the length of the major axis of the LV (90 +/- 6 to 84 +/- 7 mm. P < 0.001), similar to what has been observed previously in men (8.0%; Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist Zerwekh JE, Peshock RM, Weatherall PT, Levine BD. J Appl Physiol 91: 645-653, 2001). In contrast, there were no significant reductions in LV or RV volumes in the exercise-trained group, and the length of the major axis was preserved. Moreover, there were significant increases in LV (1.9 +/- 0.4 to 2.3 +/- 0.3 g/kg; P < 0.001) and RV masses (0.7 +/- 0.1 to 0.8 +/- 0.2 g/kg; P = 0.002), as well as mean wall thickness (9 +/- 2 to 11 +/- 1 mm; P = 0.02). The interaction between sedentary and exercise LV and RV masses was highly significant (P < 0.0001). Protein and BCAA supplementation led to an intermediate phenotype with no change in LV or RV mass after bed rest, but there remained a significant reduction in LV volume (103 +/- 14 to 80 +/- 16 ml; P = 0.02) and major-axis length (91 +/- 5 to 88 +/- 7 mm; P = 0.003). All subjects lost an equivalent amount of body mass (3.4 +/- 0.2 kg control; 3.1 +/- 0.04 kg exercise; 2.8 +/- 0.1 kg protein). Cardiac atrophy occurs in women similar to men following sedentary 60 days HDT bed rest. However, exercise training and, to a lesser extent, protein supplementation may be potential countermeasures to the cardiac atrophy associated with chronic unloading conditions such as in spaceflight and prolonged bed rest.  相似文献   

13.
We studied the cardiovascular effects of phasic increases in intrathoracic pressure (ITP) by high-frequency jet ventilation in an acute pentobarbital-anesthetized intact canine model both before and after the induction of acute ventricular failure by large doses of propranolol. Chest and abdominal pneumatic binders were used to further increase ITP. Respiratory frequency, percent inspiratory time, mean ITP, and swings in ITP throughout the respiratory cycle were independently varied at a constant-circulating blood volume. We found that pertubations in mean ITP induced by ventilator adjustments accounted for all observable steady-state hemodynamic changes independent of respiratory frequency, inspiratory time, or phasic respiratory swings in ITP. Changes in ITP were associated with reciprocal changes in both intrathoracic vascular pressures (P less than 0.01) and blood volume (P less than 0.01). When cardiac function was normal, left ventricular (LV) stroke volume decreased, whereas in acute ventricular failure, LV stroke volume increased in response to increasing ITP when apneic LV filling pressure was high (greater than or equal to 17 Torr) and did not change if apneic LV filling pressure was low (less than or equal to 12 Torr). However, in all animals in acute ventricular failure, LV stroke work increased with increasing ITP. Our study demonstrates that the improved cardiac function seen with increasing ITP in acute ventricular failure is dependent upon adequate LV filling and decreased LV afterload in a manner analogous to that seen with arterial vasodilator therapy in heart failure.  相似文献   

14.
Right ventricular function was investigated in seven fetal sheep (125-130 days gestation) hypoxaemic at a mean of 5 days postoperation, and were compared to nine normoxaemic fetal sheep of the same gestation. Arterial O2 and CO2 tensions, pH, and haematocrit values for the hypoxaemic and normoxaemic fetuses were 15.6 +/- 1.0 vs. 20.6 +/- 1.8 torr, 49.4 +/- 4.1 vs. 46.1 +/- 1.6 torr, 7.38 +/- 0.02 vs. 7.39 +/- 0.02, and 29 +/- 7.5 vs. 31 +/- 5.3%, respectively. Right ventricular output and stroke volume were similar in the two groups, 241 +/- 57 vs. 247 +/- 75 ml X min-1 X kg-1 and 1.5 +/- 0.4 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Filling and afterload pressures were also similar in the hypoxaemic and normoxaemic fetuses with right atrial pressure of 3.0 +/- 1.0 vs. 3.7 +/- 1.2 mmHg, and arterial pressure of 42 +/- 5 vs. 43 +/- 4 mmHg, respectively. Ventricular function curves were produced by rapid withdrawal and re-infusion of fetal blood producing curves with a steep ascending limb and a plateau phase. The breakpoint joining the limbs of the control function curve for the hypoxaemic and normoxaemic fetuses were right atrial pressure 2.9 +/- 1.0 vs. 3.4 +/- 1.2 mmHg and a stroke volume of 1.5 +/- 0.5 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Linear regression of stroke volume against arterial pressure from 30-90 mmHg during infusions of nitroprusside and phenylephrine at right atrial filling pressures greater than breakpoint was stroke volume = 0.018 ml X kg-1 X mmHg-1 arterial pressure +/- 2.25 ml X kg-1. This equation is not different from that calculated in normoxaemic fetuses, and demonstrates that the fetal right ventricle is quite sensitive to changes in arterial pressure. These data indicate that reduction in fetal oxygen content by an estimated 40% does not affect fetal right ventricular function.  相似文献   

15.
One of the most debilitating effects of primary aging is the decline in aerobic exercise capacity. One of its causes is an age-related decline in peak exercise stroke volume. This study's main purpose was to determine the cardiovascular adaptations to aging that most influence peak exercise stroke volume in the elderly. We hypothesized that increased left ventricular (LV) filling and mild concentric LV remodeling would be associated with an increase in peak exercise stroke volume corrected for lean body mass (LBM) and that an increased augmentation index (AI), which is a marker of arterial stiffness, would be associated with a decrease. A second aim was to determine the adaptations to aging that most influence LV concentric remodeling in the elderly. We hypothesized that AI would be a predictor of LV mass/LBM and the LV posterior wall thickness-to-LV radius ratio (h/r). We performed a cross-sectional study of cardiac and vascular adaptations to aging in 52 sedentary, elderly subjects. LV filling [as measured by the early-to-late transmitral flow velocity ratio (E/A)] was inversely correlated with and was an independent predictor of peak exercise stroke volume/LBM and was also a predictor of LV remodeling. AI was a predictor of LV remodeling (LV mass/LBM) but not of peak exercise stroke volume/LBM. We conclude that 1) maintenance of LV filling (E/A <1) is associated with a higher peak exercise stroke volume/LBM in very elderly subjects and thus may be a useful adaptation that enhances stroke volume during peak exercise, 2) LV remodeling and AI are less influential on peak exercise stroke volume/LBM, and 3) AI was the most important predictor of LV remodeling.  相似文献   

16.
The aim of this study was to evaluate how the timing of the pressure pulse produced by peripheral reflection affects the left ventricle (stroke volume, ventricular work, coronary driving pressure). Ten isolated perfused rabbit hearts were attached to rubber tubes of different lengths (0.5, 0.8 and 1 m) connected to a hydraulic resistance. The different lengths produced reflections at different times and the reflected pulse returned to the ventricle in early (at 84 ms), middle (at 134 ms) and late systole (at 168 ms) for the three tubes, respectively. The loading parameters (ventricular filling pressure and hydraulic resistance) were not changed during the procedure. Ventricular and aortic pressure and aortic flow were monitored continuously and recorded; cardiac cycle was fixed at 800 ms. An operator-independent procedure was used to calculate instantaneous and total systolic external work, mean diastolic aorto-ventricular pressure difference and ventricular stroke volume. RESULTS: The mean value of stroke volume for the three different length rubber tubes was 320 +/- 71, 348 +/- 77 and 368 +/- 87 microliters, respectively. The mean value of total external work was 20.3 +/- 8.3, 22.5 +/- 8.8 and 24.2 +/- 9.6 mJ, respectively. The mean aortoventricular pressure difference was 40 +/- 12, 46 +/- 13, 50 +/- 14 mmHg, respectively (1 mmHg = 133 Pa). The differences between the parameters measured in the three conditions were statistically significant (p < 0.05). A reduction of reflection timing, reduces, on a pure mechanical basis, cardiac output and external ventricular work and has a negative effect on coronary driving pressure.  相似文献   

17.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

18.
We have recently reported a decrease in cardiac output in newborn dogs during respiratory alkalosis which is independent of changes in airway pressure. The present study was designed to characterize the mechanism responsible for this reduction in cardiac output. Twelve newborn coonhounds were anaesthetized with pentobarbital, paralyzed with pancuronium and hyperventilated to an arterial carbon dioxide tension (PaCO2) of 20 torr. Subsequent changes in PaCO2 were achieved by altering the FiCO2. Measurements were made after 30 min at either 40 or 20 torr PaCO2. The sequence of PaCO2 levels was randomized. Compared to normocarbia, respiratory alkalosis resulted in significantly decreased cardiac output (279 +/- 16 to 222 +/- 10 ml/min per kg, mean +/- SEM, P less than 0.001), stroke volume (1.60 +/- 0.10 to 1.24 +/- 0.06 ml/kg; P less than 0.001), maximum left ventricular dP/dt (1629 +/- 108 to 1406 +/- 79 mmHg/s, P less than 0.01) and left ventricular end diastolic pressure (3.9 +/- 0.4 to 2.9 +/- 0.3 mmHg; P less than 0.001). The decrease in cardiac output during respiratory alkalosis is manifest through a decrease in stroke volume, which is due, at least in part, to the decrease in left ventricular end diastolic pressure. The decrease in maximum left ventricular dP/dt is likely a reflection of the decrease in preload, however, a change in myocardial contractility cannot be excluded. We speculate the decrease in filling pressure may be due to an increase in venous capacitance.  相似文献   

19.

Objectives

Left atrium (LA) plays an important role in left ventricular filling. It is well known that right ventricular apical pacing has unfavorable effects on ventricular systolic and diastolic performance. The aim of this study is to evaluate the LA mechanical functions with 2D echocardiography in patients with a permanent pacemaker after short time ventricular pacing.

Design

Echocardiographic examination was performed in 38 patients (mean age 63.0± 10.9, 18 female) with dual chamber pacemakers or defibrillators (< 20% ventricular pacing within previous 6 months, all of them on sinus rhythm) before and after 4 hours > 90% ventricular pacing at 70 beats per minute in DDD mode with an optimal AV interval. Left atrial volumes (LAV) including at the time of mitral valve opening (Vmax), at closure (Vmin), and at the onset of atrial systole (Volp) were measured. The passive emptying, conduit, active emptying and total emptying volume, stroke volumes were also calculated.

Results

No significant differences were noted at baseline and after pacing for absolute Vmax, Volp, passive emptying, conduit, active emptying, total emptying volumes as well as the volumes indexed to body surface area (p >0.05).

Conclusions

Short - time RV pacing seems to have no acute effects on left atrial mechanical functions.  相似文献   

20.
We evaluated the volumetric responses of the right and left ventricles to upright exercise using two noninvasive methods, first-pass radionuclide angiocardiography and the CO2 rebreathing technique, in nine normal subjects. Right (RV) and left (LV) ventricular ejection fractions, heart rate, and cardiac index were determined at rest and during steady-state exercise on the bicycle ergometer at 50% of maximal O2 consumption. From these data, stroke volume index (SVI), end-diastolic volume index (EDVI), and end-systolic volume index (ESVI) were derived. SVI increased from 40 +/- 7 ml/m2 at rest to 59 +/- 13 ml/m2 with exercise (P less than 0.001). RVEDVI increased significantly from 82 +/- 16 ml/m2 at rest to 95 +/- 21 ml/m2 during exercise (P = 0.008), while there was no significant change in RVESVI with exercise. Changes in LVEDVI and LVESVI during upright exercise were similar to the right ventricle. The increase in systolic blood pressure during exercise, along with no change in LVESVI, indicated enhanced ventricular contractility. The normal augmentation in SVI during submaximal exercise was due to both the Frank-Starling mechanism and an increased contractile state. Application of these or similar techniques may be useful in evaluating ventricular performance in patients with cardiorespiratory dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号