首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effects of polyamines on the breakdown of synthetic polynucleotides [poly(A), poly(C), and poly(U)] by E. coli ribonuclease I [ribonucleate 3'-oligonucleotidohydrolase, EC 3.1.4.23] and ribonuclease II [EC 3.1.4.1] have been studied. The degradation of poly(C) by RNase II was stimulated by spermine and spermidine, while that of poly(A) by RNase II was not affected by polyamines. Under our standard experimental conditions, the breakdown of poly(U) by RNase II was inhibited slightly by polyamines. The stimulatory effect of spermine and spermidine on the breakdown of poly(C) occurred in the absence of monovalent cations but not in the absence of divalent cations. When polyamines were used as a stimulant of RNase II, the ratio of poly(C) degradation to poly(U) degradation was greater in the presence of inhibitors such as poly(G) than in their absence. Although the breakdown of all synthetic polynucleotides by RNase I was stimulated by polyamines, the degree of stimulation by polyamines was in the order poly(C)greater than poly(A)(see text)poly(U). However, the difference in degree of stimulation among polynucleotides decreased as monovalent cation concentration was increased.  相似文献   

2.
An endoribonuclease has been purified nearly to homogeneity from rat liver microsomes, and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 58 000, as estimated by both gel filtration and SDS-polyacrylamide gel electrophoresis and produced oligonucleotides from poly(A), poly(U) and poly(C). No mononucleotide was obtained by the enzymatic hydrolysis of the above substrates. The enzyme made endonucleolytic cleavages which generated 5'-phosphate-terminated oligonucleotides. It was suggested that the existence of at least (Ado5'P)2 residues at both sides of the cleavage bond was necessary for the action of the endoribonuclease. Divalent cations (Mg2+ or Mn2+) were required for the enzymatic activity, while K+ inhibited the enzyme. Spermine stimulated the enzymatic activity in the presence of 1 mM Mg2+.  相似文献   

3.
The effects of polyamines on the breakdown of synthetic polynucleotides [poly(A), poly(C), and poly(U)] by polynucleotide phosphorylase [polyribonucleotide: orthophosphate nucleotidyltransferase, EC 2.7.7.8] from Micrococcus luteus have been studied. Although the breakdown of all the synthetic polynucleotides tested was stimulated by polyamines, the degree of stimulation by polyamines was in the order poly(C) greater than poly(A) greater than poly(U) at pH 7.5. However, the difference in degree of stimulation among polynucleotides decreased as the pH or monovalent cation concentration was increased. In the presence of heparin, an inhibitor of polynucleotide phosphorylase hydrolysis of polynucleotides, spermidine clearly stimulated the breakdown of poly(C) and poly(A), while the breakdown of poly(U) was stimulated only slightly by the addition of spermidine. Although binding of [14C]spermine to polynucleotide phosphorylase was observed by gel filtration, the amount of spermine bound to the enzyme was much less than that to RNA.  相似文献   

4.
An endoribonuclease existing as a complex with inhibitor in the cytosol of rat liver has been purified about 128,000-fold after inactivation of the inhibitor with CdCl2. The enzyme had a molecular weight of 16,000 and produced 3'-CMP via 2',3'-cyclic phosphate of cytidine from poly(C). The breakdown of poly(U) by the enzyme was less than 5% of poly(C) breakdown. Poly(A) was not hydrolyzed by the enzyme. The enzyme had a pH optimum of 7.5-8, was heat-stable and had a Km of 952 micrograms yeast RNA and a Km of 198 micrograms poly(C) per ml. The maximal velocities for yeast RNA and poly(C) degradation were 3,970 A260/min/mg protein and 1,890 A260/min/mg protein, respectively. The enzyme was slightly stimulated by polyamines or monovalent and divalent cations except Mn2+, but was inhibited by nucleoside triphosphate, poly(G) and rat liver RNase inhibitor. Inhibition of the enzyme by rat liver RNase inhibitor was not prevented by monovalent and divalent cations or polyamines, although inhibition by poly(G) was prevented by these ions.  相似文献   

5.
Study of the effects of Cu2+, Zn2+ cations and polyamines, spermine and spermidine, on the nuclear poly(ADP-ribose)polymerase activity of rat brain was carried out. It was shown that low concentrations of Cu2+ stimulate the activity of purified poly(ADP-ribose)polymerase. The poly(ADP-ribose)polymerase activity was increased 1.4-fold at 5 microM Cu2+. A further increase of Cu2+ concentration inhibited the enzymatic activity; at 50 microM Cu2+ the polymerase activity appeared to be fully inhibited. It was shown that Zn2+ inhibited only the poly(ADP-ribose)polymerase activity. Zn2+ at a concentration of 125 microM fully inhibited the enzymatic activity. Spermine and spermidine stimulated the poly(ADP-ribose)polymerase activity of brain nuclei of newborn and old rats.  相似文献   

6.
The binding of polyamines and magnesium to synthetic polynucleotides has been studied by gel filtration on a Sephadex G-50 column. Among the single-stranded polynucleotides examined [poly(A), poly(C), and poly(U)], polyamines were found to bind to poly(C) and poly(U) preferentially, while the binding of Mg2+ was greatest with poly(A). Spermine bound to poly(U) was displaced completely by NH4+ but incompletely by Mg2+, while Mg2+ bound to poly(A) was displaced completely be spermine but incompletely by NH4+. The optimal pH for the binding of spermine to poly(U) was found to be about 7.9, while Mg2+ could bind to poly(A) over a broad pH range (7.1--8.7).  相似文献   

7.
L S Lasater  D C Eichler 《Biochemistry》1984,23(19):4367-4373
A single-strand-specific, nucleolar exoribonuclease from Ehrlich ascites tumor cells has been isolated and purified free from other nucleases. The exonuclease degraded single-stranded RNA processively from either a 5'-hydroxyl or a 5'-phosphorylated end and released 5'-mononucleotides. The enzyme digested single-strand poly(C), poly(U), and poly(A) equally well but did not degrade duplex poly(C).poly(I) or poly(A).poly(U). Less than 0.2% of duplex DNA or 1.5% of heat-denatured DNA was degraded under the conditions which resulted in greater than 26% degradation of RNA. The ribonuclease required Mg2+ (0.2 mM) for optimum activity and was inhibited by ethylenediaminetetraacetic acid but not by human placental RNase inhibitor. The native enzyme had a Stokes radius of 42 A and a sedimentation coefficient (S20,w) of 4.3 S. From these values, an apparent molecular weight of 76 000 was derived by using the Svedberg equation. The localization and unique mode of degradation suggest a role for the 5'----3' exoribonuclease in ribosomal RNA processing.  相似文献   

8.
A new ribonuclease called RNase N was isolated from Escherichia coli. It is a nonspecific endoribonuclease that can cleave rRNA, poly(U), and poly(C) to small oligonucleotides and 5'-mononucleotides. It requires monovalent cations and is inhibited by divalent cations. It is suggested that this enzyme plays a role in the decay of rRNA,under various starvation conditions and perhaps in the decay of mRNA.  相似文献   

9.
An exoribonuclease has been purified nearly to homogeneity from rat liver microsomes and its mode of action and general properties were studied. The molecular weight values for the enzyme, as estimated by gel filtration and SDS-polyacrylamide gel electrophoresis, were 88 000 and 92 000, respectively. The enzyme produced, via a processive mechanism Ado5'P as the only product from poly(A). The results of the hydrolysis of 4 S (Ado5'P)n and (Ado3'P)n by the exoribonuclease with or without alkaline phosphatase and the inhibition of the enzymatic activity by oligonucleotides having a 3'-phosphate group in the 3'-terminus suggested that the degradation proceeds in the 3' to 5' direction. These findings were confirmed by the analysis of hydrolyzed products of various oligoadenylates and Ado3'PUrdPGuo and by the comparison of the rates of hydrolysis of (Ado3'P)2Ado by the enzyme in the presence of varying amounts of (Ado3'P)3. Mg2+ was required for the enzymatic activity, and Mn2+ partially substituted for Mg2+. The activity of the enzyme was stimulated by K+ and spermine.  相似文献   

10.
In erythrocytes, spermine concentration decreases gradually with age, which is paralleled by increases of cytosolic Ca2+ concentration, with subsequent cell shrinkage and cell membrane scrambling. Cytosolic Ca2+ was estimated from fluo-3 fluorescence, cell volume from forward scatter, cell membrane scrambling from annexin V binding and cation channel activity with whole-cell patch-clamp in human erythrocytes. Extracellular spermine exerted a dual effect on erythrocyte survival. At 200 μM spermine blunted the increase of intracellular Ca2+, cell shrinkage and annexin V binding following 48 h exposure of cells at +37 °C. In contrast, short exposure (10-30 min) of cells to 2 mM spermine was accompanied by increased cytosolic Ca2+ and annexin binding. Intracellular addition of spermine at subphysiological concentration (0.2 μM) significantly decreased the conductance of monovalent cations (Na+, K+, NMDG+) and of Ca2+. Moreover, spermine (0.2 μM) blunted the stimulation of voltage-independent cation channels by Cl? removal. Spermine (0.2 and 200 μM) added to the extracellular bath solution similarly inhibited the cation conductance in Cl?-containing bath solution. The effect of 0.2 μM spermine, but not the effect of 200 μM, was rapidly reversible. Acute addition (250 μM) of a naphthyl acetyl derivative of spermine (200 μM) again significantly decreased basal cation conductance in NaCl bath solution and inhibited voltage-independent cation channels. Spermine is a powerful regulator of erythrocyte cation channel cytosolic Ca2+ activity and, thus, cell survival.  相似文献   

11.
Poly(A) polymerase activity is induced during vaccinia virus infection of HeLa cells. The enzyme is maximally induced at 3.5 h postinfection. Partial purification frees the preparation of RNase activity and RNA polymerase activity. ATP is the substrate for poly(A) synthesis. A small amount of poly(A) is produced from added adenosine diphosphate due to the production of ATP by an adenylate kinase present in the preparation. The incorporation of ATP into poly(A) is dependent on divalent cations (Mg2+ or Mn2+) and is not inhibited by UTP, CTP, or GTP. Poly(U) stimulates ATP incorporation; poly(A) and poly(C) have little effect on ATP incorporation, and poly(dT) is extremely inhibitory. RNA prepared from HeLa cells and from the partially purified poly(A) polymerase (the enzyme preparation contains endogenous RNA [Brakel and Kates]) stimulates ATP incorporation by poly(A) polymerase which was subjected to DEAE-cellulose chromatography. RNase's, pancreatic and T1, inhibit the production of poly(A). DNase has little effect. Poly(U) is able to stimulate poly(A) production in the presence of T1 RNase.  相似文献   

12.
Effect of endogenous polyamine spermine, a relaxant of smooth muscle, on the activity of myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase was studied. It was observed a tendency to activation of enzyme at the spermine concentrations 0.1-0.5 mM, the increase of the polyamine concentrations up to 10 mM inhibited. ATPase by 80% (I50 = 5.5 +/- 0.3 mM). Spermine inhibited enzyme decreasing its turnover rate and affinity for Ca2+. The ATPase affinity for Mg2+ increased in the presence of spermine. It was revealed, that the inhibitory effect of spermine is changed by the stimulatory effect under the increase of Ca2+ concentration (up to 2.6 microM), that correlates with the relaxing effect of this polyamine on the smooth muscle.  相似文献   

13.
A tyrosine-specific protein kinase from Ehrlich ascites tumor cells   总被引:2,自引:0,他引:2  
A protein tyrosine kinase that phosphorylates both alpha and beta subunits of inactivated (Na+,K+)-ATPase from dog kidney was purified about 500-fold from Ehrlich ascites tumor cell membranes. The enzyme required divalent cations Mn2+, Mg2+, or Fe2+ but was inhibited by Cu2+ or Zn2+. The purified enzyme phosphorylated the beta subunit about five times faster than the alpha subunit of the (Na+,K+)-ATPase. The random polymer poly(Glu80Tyr20) was an excellent substrate while casein was only marginally phosphorylated. In contrast, the purified transforming gene product of Rous sarcoma virus phosphorylated all three substrates and the (Na+,K+)-ATPase was preferentially phosphorylated on the alpha subunit. The transforming gene product of Fujinami sarcoma visue and EGF receptor kinase from A431 cells phosphorylated (Na+,K+)-ATPase poorly whereas casein was an excellent substrate. The molecular weight of the partially purified protein tyrosine kinase from Ehrlich ascites tumor cells determined by gel filtration was about 60,000. One of two major phosphorylated phosphopeptides resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis had an Mr of 60 kDa, thus suggesting that it might be the autophosphorylated protein tyrosine kinase. A phosphatase that hydrolyzes phosphorylated histones or poly(Glu80Tyr20) was partially purified from the same membrane.  相似文献   

14.
The effect of polyamines on the polyadenylation reaction in vitro was investigated. Varying concentrations of spermine were added to the reaction catalyzed by purified poly(A) polymerase using rat liver nuclear RNA, poly(A), Escherichia coli tRNA or (Ap)3A as exogenous primers. The enzyme activity decreased progressively with increasing concentrations of polyamines; complete inhibition was obtained at 0.4 and 1.2 mm spermine for the nuclear RNA- and poly(A)-primed reactions, respectively. No inhibition was observed for the (Ap)3A-primed reaction. Spermidine and putrescine also inhibited polyadenylation but to a lesser extent than spermine. The degree of inhibition by spermine was related to the polynucleotide primer concentrations. Spermine prevented polyadenylation by binding to the primer but not to the poly(A) polymerase molecule as shown by the migration of [14C]spermine through glycerol gradients after preincubation with enzyme or tRNA. At concentrations inhibitory to polyadenylation in vitro, spermine could stimulate the DNA-dependent RNA synthesis catalyzed by RNA polymerase II. The present study suggests that low levels of polyamines could be used as specific inhibitors of the poly(A) synthesis in vitro.  相似文献   

15.
The binding of [14C] spermine to polynucleotides has been studied by equilibrium dialysis and the data analysed by Scatchard plots. The binding of spermine to poly(A) shows a binding site for 1 spermine/140 nucleotides when measured in 0.2M NaCl at 5 degrees C. Poly(C) also has a similar sites; on the other hand poly(U) and poly(G) each have a binding site for 1 spermine/12 nucleotides. The addition of complementary di- or trinucleotides to either poly(A) or poly(U) affects their ability to bind spermine, in particular the high affinity site on poly(A) is no longer detectable. The effect of spermine, spermidine and putrescine on the binding of polynucleotides to complementary di- and trinucleotides was also studied. Spermine markedly increased the binding of both ApA and of ApApA to poly(U) whereas spermidine and putrescine had very little effect. In contrast spermine had little effect on the binding of either UpU or UpUpU to poly(A). These results suggest that spermine binding to oligo- and polynucleotides is dependent on the particular nucleotide combination involved and that spermine may therefore be able to act selectively within cells.  相似文献   

16.
An extracellular nuclease from Rhizopus stolonifer (designated as nuclease Rsn) was purified to homogeneity by chromatography on DEAE-cellulose followed by Blue Sepharose. The M(r) of the purified enzyme determined by native PAGE was 67? omitted?000 and it is a tetramer and each protomer consists of two unidentical subunits of M(r) 21? omitted?000 and 13? omitted?000. It is an acidic protein with a pI of 4.2 and is not a glycoprotein. The purified enzyme showed an obligate requirement of divalent cations like Mg(2+), Mn(2+) and Co(2+) for its activity but is not a metalloprotein. The optimum pH of the enzyme was 7.0 and was not influenced by the type of metal ion used. Although, the optimum temperature of the enzyme for single stranded (ss) DNA hydrolysis in presence of all three metal ions and for double stranded (ds) DNA hydrolysis in presence of Mg(2+) was 40 degrees C, it showed higher optimum temperature (45 degrees C) for dsDNA hydrolysis in presence of Mn(2+) and Co(2+). Nuclease Rsn was inhibited by divalent cations like Zn(2+), Cu(2+) and Hg(2+), inorganic phosphate and pyrophosphate, low concentrations of SDS, guanidine hydrochloride and urea, organic solvents like dimethyl sulphoxide, dimethyl formamide and formamide but not by 3'- or 5'-mononucleotides. The studies on mode and mechanism of action showed that nuclease Rsn is an endonuclease and cleaves dsDNA through a single hit mechanism. The end products of both ssDNA and dsDNA hydrolysis were predominantly oligonucleotides ending in 3'-hydroxyl and 5'-phosphoryl termini. Moreover, the type of metal ion used did not influence the mode and mechanism of action of the enzyme.  相似文献   

17.
Binding of the yeast Tyr-tRNA and Phe-tRNA to the A site, and the binding of their acetyl derivatives to the P site of poly(U11,A)-programmed Escherichia coli ribosomes was studied. Spermine stimulated the rate of binding of both tRNAs at least threefold, enabling more than 90% final saturation of both ribosomal binding sites. The effect is observed when the tRNAs, but not ribosomes or poly(U11,A), are preincubated with polyamine. Regardless of the binding site, optimal saturation was reached at spermine/tRNA molar ratios of 3 for tRNA(Phe) and 5 for tRNA(Tyr). The same low spermine/tRNA ratios were previously reported to stabilize the conformation of these tRNAs in solution. On the other hand, the messenger-free, EF-Tu- and EF-G-dependent polymerization of lysine from E. coli Lys-tRNA is drastically reduced, while the poly(A)-directed polymerization is stimulated by spermine through a wide range of Mg2+ concentrations. Misreading of UUU codons as isoleucine, assayed by the A-site binding of E. coli Ile-tRNA, is also inhibited by spermine. All these results demonstrate that spermine increases the efficiency and accuracy of a series of macromolecular interactions leading to the correct incorporation of an amino acid into protein, at the same time preventing some unspecific or erroneous interactions. From the analogy with its known structural effects, it can be inferred that spermine does so by conferring on the tRNA a specific biologically functional conformation.  相似文献   

18.
Characterization of a polyriboadenylate polymerase from vaccinia virions.   总被引:11,自引:0,他引:11  
A poly(A) polymerase with a molecular weight of approximately 80,000 containing 51,000 and 35,000 molecular weight subunits, was purified by affinity chromatography from vaccinia virus cores. The enzyme had a pH optimum of about 8.6, was dependent on divalent cations, and had considerably more activity with Mn-2+ than Mg-2+. At equimolar concentrations, other ribonucleoside triphosphates inhibited poly(A) polymerase activity by less than 10%; NaCl was extremely inhibitory at concentrations above 0.1 M. Under standard assay conditions, poly(A) polymerase activity was stimulated more than 10-fold by poly(C), but to small extent or not at all by other homopolyribonucleotides or natural RNA species unless they were first subjected to partial hydrolysis and alkaline phosphatase treatment. The ineffectiveness of most long polyribonucleotides was attributed to enzyme binding to internal regions. Short poly- or oligoribonucleotides prepared from natural or synthetic RNAs, except poly(G), exhibited similar priming abilities, and isotope transfer experiments indicated the covalent attachment of poly(A) to cytidylate, uridylate, and inosinate residues. Experiments with a series of uridylate oligomers indicated that the minimum effective primer length was four to six nucleotides. Partially digested DNA and short poly- and oligodeoxyribonucleotides of dT, dC, and dI, but not of dA and dG, also acted as effective primers for the poly(A) polymerase.  相似文献   

19.
RNase R is a highly processive, hydrolytic 3′-5′ exoribonuclease belonging to the RNB/RNR superfamily which plays significant roles in RNA metabolism in bacteria. The enzyme was observed to be essential for growth of the psychrophilic Antarctic bacterium Pseudomonas syringae Lz4W at a low temperature. We present results here pertaining to the biochemical properties of RNase R and the RNase R-encoding gene (rnr) locus from this bacterium. By cloning and expressing a His6-tagged form of the P. syringae RNase R (RNase RPs), we show that the enzyme is active at 0 to 4°C but exhibits optimum activity at ∼25°C. The enzyme is heat labile in nature, losing activity upon incubation at 37°C and above, a hallmark of many psychrophilic enzymes. The enzyme requires divalent cations (Mg2+ and Mn2+) for activity, and the activity is higher in 50 to 150 mM KCl when it largely remains as a monomer. On synthetic substrates, RNase RPs exhibited maximum activity on poly(A) and poly(U) in preference over poly(G) and poly(C). The enzyme also degraded structured malE-malF RNA substrates. Analysis of the cleavage products shows that the enzyme, apart from releasing 5′-nucleotide monophosphates by the processive exoribonuclease activity, produces four-nucleotide end products, as opposed to two-nucleotide products, of RNA chain by Escherichia coli RNase R. Interestingly, three ribonucleotides (ATP, GTP, and CTP) inhibited the activity of RNase RPs in vitro. The ability of the nonhydrolyzable ATP-γS to inhibit RNase RPs activity suggests that nucleotide hydrolysis is not required for inhibition. This is the first report on the biochemical property of a psychrophilic RNase R from any bacterium.  相似文献   

20.
The effect of polyamines on ribonucleases in the presence of various inhibitors (poly(G), heparin, and rat liver RNase inhibitor) has been studied. Bovine pancreatic RNas A and a ribonuclease from horse submaxillary gland (RNase HS) were inhibited by the inhibitors, but RNase T1 and RNase M were not inhibited. Polyamines were found to restore the activites of RNase A and RNase HS inhibited by poly(G) or heparin but not those activities inhibited by rat liver RNase inhibitor. When poly(U) and poly(C) were used as substrates, the inhibitory effects of poly(G) and heparin were greater with poly(U) than poly(C) as a substrate. However, when poly(C) was used as a substrate in the presence of either of the above inhibitors, the restoration of RNase activity by sperimine was more efficient. In fact, a stimulatory effect was observed. From the double-reciprocal plots, it was concluded that polyamines restored the activiities of RNases by increasing the availability of the substrate and enzyme to each other. The restoration of enzyme activity by polyamines occurred through the binding of the polyamines to the inhibitor and the subsequent release of enzyme from the inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号