首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsating bubble surfactometer (PBS) is often used for in vitro characterization of exogenous lung surfactant replacements and lung surfactant components. However, the commercially available PBS is not able to dynamically track bubble size and shape. The PBS therefore does not account for bubble growth or elliptical bubble shape that frequently occur during device use. More importantly, the oscillatory volume changes of the pulsating bubble are different than those assumed by the software of the commercial unit. This leads to errors in both surface area and surface tension measurements. We have modified a commercial PBS through the addition of an image-acquisition system, allowing real-time determination of bubble size and shape and hence the accurate tracking of surface area and surface tension. Compression-expansion loops obtained with the commercially available PBS software were compared with those provided by the image-analysis system for dipalmitoylphosphatidylcholine, Infasurf, and Tanaka lipids (dipalmitoylphosphatidylcholine-palmitoyloleoylphosphatidyl-glycerol-palmitic acid, 68:22:9) at concentrations of 0.1 and 1.0 mg/ml and at frequencies of 1 and 20 cycles/min. Whereas minimum surface tension as determined by the image-analysis system is similar to that measured by the commercially available software, the maximum surface tension and the shapes of the interfacial area-surface tension loops are quite different. Differences are attributable to bubble drift, nonsinusoidal volume changes, and variable volume excursions seen with the modified system but neglected by the original system. Image analysis reveals that the extent of loop hysteresis is greatly overestimated by the commercial device and that an apparent, rapid increase in surface tension upon film expansion seen in PBS loops is not observed with the image-analysis system. The modified PBS system reveals new dynamic characteristics of lung surfactant preparations that have not previously been reported.  相似文献   

2.
As birds have tubular lungs that do not contain alveoli, avian surfactant predominantly functions to maintain airflow in tubes rather than to prevent alveolar collapse. Consequently, we have evaluated structural, biochemical, and functional parameters of avian surfactant as a model for airway surfactant in the mammalian lung. Surfactant was isolated from duck, chicken, and pig lung lavage fluid by differential centrifugation. Electron microscopy revealed a uniform surfactant layer within the air capillaries of the bird lungs, and there was no tubular myelin in purified avian surfactants. Phosphatidylcholine molecular species of the various surfactants were measured by HPLC. Compared with pig surfactant, both bird surfactants were enriched in dipalmitoylphosphatidylcholine, the principle surface tension-lowering agent in surfactant, and depleted in palmitoylmyristoylphosphatidylcholine, the other disaturated phosphatidylcholine of mammalian surfactant. Surfactant protein (SP)-A was determined by immunoblot analysis, and SP-B and SP-C were determined by gel-filtration HPLC. Neither SP-A nor SP-C was detectable in either bird surfactant, but both preparations of surfactant contained SP-B. Surface tension function was determined using both the pulsating bubble surfactometer (PBS) and capillary surfactometer (CS). Under dynamic cycling conditions, where pig surfactant readily reached minimal surface tension values below 5 mN/m, neither avian surfactant reached values below 15 mN/m within 10 pulsations. However, maximal surface tension of avian surfactant was lower than that of porcine surfactant, and all surfactants were equally efficient in the CS. We conclude that a surfactant composed primarily of dipalmitoylphosphatidylcholine and SP-B is adequate to maintain patency of the air capillaries of the bird lung.  相似文献   

3.
The main function of pulmonary surfactant, a mixture of lipids and proteins, is to reduce the surface tension at the air/liquid interface of the lung. The hydrophobic surfactant proteins SP-B and SP-C are required for this process. When testing their activity in spread films in a captive bubble surfactometer, both SP-B and SP-C showed concentration dependence for lipid insertion as well as for lipid film refinement. Higher activity in DPPC refinement of the monolayer was observed for SP-B compared with SP-C. Further differences between both proteins were found, when subphase phospholipid vesicles, able to create a monolayer-attached lipid reservoir, were omitted. SP-C containing monolayers showed gradually increasing minimum surface tensions upon cycling, indicating that a lipid reservoir is required to prevent loss of material from the monolayer. Despite reversible cycling dynamics, SP-B containing monolayers failed to reach near-zero minimum surface tensions, indicating that the reservoir is required for stable films.  相似文献   

4.
For studies of the mechanical effects of lung surfactants, the captive bubble surfactometer (CBS) combines the advantages of the continuous film of Pattle's bubbles with the feasibility of the Langmuir-Wilhelmy balance to produce surface tension-area hysteresis loops. The CBS allows the compression of films to very low and stable surface tensions of 1-2 mN/m. Such low and stable surface tensions are in line with results obtained from pressure-volume studies on excised lungs. In addition, the CBS is useful to test other essential physical properties of the surfactant system, including: (1) rapid film formation (within seconds) through adsorption from the hypophase; (2) low film compressibility with a fall in surface tension to very low (<2 mN/m) values during surface compression; and (3) effective replenishment of the surface film on expansion by the incorporation of surfactant material from material associated with the surface (the surface associated surfactant reservoir). Morphological observations of films fixed in situ or in vitro reveal frequently their multilayered structure, which is consistent with the concept of the surface reservoir. The deviation of the bubbles from a Laplacian shape at very low surface tension and the morphological observations suggest that the surfactant film cannot be considered a simple monolayer.  相似文献   

5.
Luminal epithelial projections formed during bronchoconstriction define interstices in which liquid can collect. Liquid in these interstices could amplify the degree of luminal compromise due to muscular contraction in at least two distinct ways. First, the luminal cross-sectional area is reduced by simple filling of the interstices. Second, if the surface tension (gamma) of the air-liquid interface is positive, the pressure drop across the interface produces an additional inward force that can further constrict the airway. We present a theoretical treatment of these two mechanisms together with data which suggest that both may significantly amplify the luminal narrowing due to airway smooth muscle contraction, particularly in small airways when gamma is high. To qualitatively assess the effects of altered gamma, guinea pig lungs with normal and altered airway liquid lining layers were frozen and studied while fully hydrated by low-temperature scanning electron microscopy. Airway gamma was altered in these animals by intratracheal instillation of 0.5 mg lysoplatelet-activating factor (lyso-PAF). The interstices of normal airways were dry, whereas the interstices of airways with altered surface lining layers were liquid filled. In addition, the surfactant inhibitory properties of lyso-PAF, 2-arachidonyl-PAF, and dipalmitoyl phosphatidylcholine (DPPC) were measured with a pulsating bubble surfactometer, using surfactant TA as the model surfactant. Minimal gamma (gamma min) of surfactant TA alone was 4.0 +/- 0.2 dyn/cm; a 5% mixture of lyso-PAF with surfactant TA resulted in a significantly (P less than 0.02) greater gamma min of 8.8 +/- 1.8 dyn/cm. In contrast, 2-arachidonyl-PAF and DPPC had minimal effects on gamma min of surfactant TA.  相似文献   

6.
The hypophase exchanger is a recently developed device that makes it possible to replace the liquid in the sample chamber of a pulsating bubble surfactometer, after a bubble has been formed, without changing the size of the bubble. A surfactant film outlining the bubble will retain its surface properties, provided the liquid entering the sample chamber and replacing the hypophase is inert. If, on the other hand, the new hypophase consists of a phospholipase solution, the physical properties of the film are seriously affected. It was found that when phospholipase C, even at low concentration, entered the sample chamber, the physical properties were significantly changed. Phospholipase A2 had to be added at a higher concentration to exert a similar effect. It is postulated that the site of action of phospholipase A2 may be partly protected in the hydrophobic region of the tightly packed surfactant film.  相似文献   

7.
The objective of this study was to evaluate the in vitro effect of budesonide and salbutamol on the surfactant biophysical properties. The surface-tension properties of two bovine lipid extracts [bovine lipid extract surfactant (BLES) and Survanta] and a rat lung lavage natural surfactant were evaluated in vitro by the captive bubble surfactometer. Measurements were obtained before and after the addition of a low and high concentration of budesonide and salbutamol. Whereas salbutamol had no significant effect, budesonide markedly reduced the surface-tension-lowering properties of all surfactant preparations. Surfactant adsorption (decrease in surface tension vs. time) was significantly reduced (P < 0.01) at a high budesonide concentration with BLES, both concentrations with Survanta, and a low concentration with natural surfactant. At both concentrations, budesonide reduced (P < 0.01) Survanta film stability (minimal surface vs. time at minimum bubble volume), whereas no changes were seen with BLES. The minimal surface tension obtained for all surfactant preparations was significantly higher (P < 0.01), and the percentage of film area compression required to reach minimum surface tension was significantly lower after the addition of budesonide. In conclusion, budesonide, at concentrations used therapeutically, adversely affects the surface-tension-lowering properties of surfactant. We speculate that it may have the same adverse effect on the human surfactant.  相似文献   

8.
Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e., the film leakage problem that is encountered with such methods as the pulsating bubble surfactometer as well as the pendant drop arrangement, and the problem of the opaqueness of the liquid, as in the original captive bubble arrangement. A sharp knife edge is the key design feature in the constrained sessile drop that avoids film leakage at low surface tension. The use of the constrained sessile drop configuration in conjunction with axisymmetric drop shape analysis to measure surface tension allows complete automation of the setup. Dynamic studies with lung surfactant can be performed readily by changing the volume of a sessile drop, and thus the surface area, by means of a motor-driven syringe. To illustrate the validity of using this configuration, experiments were performed using an exogenous lung surfactant preparation, bovine lipid extract surfactant (BLES) at 5.0 mg/ml. A comparison of results obtained for BLES at low concentration between the constrained sessile drop and captive bubble arrangement shows excellent agreement between the two approaches. When the surface area of the BLES film (0.5 mg/ml) was compressed by about the same amount in both systems, the minimum surface tensions attained were identical within the 95% confidence limits.  相似文献   

9.
Pulmonary surfactant spreads to the hydrated air-lung interface and reduces the surface tension to a very small value. This function fails in acute respiratory distress syndrome (ARDS) and the surface tension stays high. Dysfunction has been attributed to competition for the air-lung interface between plasma proteins and surfactant or, alternatively, to ARDS-specific alterations of the molecular profile of surfactant. Here, we compared the two mechanisms in vitro, to assess their potential role in causing respiratory distress. Albumin and fibrinogen exposure at or above blood level concentrations served as the models for testing competitive adsorption. An elevated level of cholesterol was chosen as a known adverse change in the molecular profile of surfactant in ARDS. Bovine lipid extract surfactant (BLES) was spread from a small bolus of a concentrated suspension (27 mg/ml) to the air-water interface in a captive bubble surfactometer (CBS) and the bubble volume was cyclically reduced and increased to assess surface activity of the spread material. Concentrations of inhibitors and the concentration and spreading method of pulmonary surfactant were chosen in an attempt to reproduce the exposure of surfactant to inhibitors in the lung. Under these conditions, neither serum albumin nor fibrinogen was persistently inhibitory and normal near-zero minimum surface tension values were obtained after a small number of cycles. In contrast, inhibition by an increased level of cholesterol persisted even after extensive cycling. These results suggest that in ARDS, competitive adsorption may not sufficiently explain high surface tension, and that disruption of the surfactant film needs to be given causal consideration.  相似文献   

10.
Pulmonary surfactant spreads to the hydrated air-lung interface and reduces the surface tension to a very small value. This function fails in acute respiratory distress syndrome (ARDS) and the surface tension stays high. Dysfunction has been attributed to competition for the air-lung interface between plasma proteins and surfactant or, alternatively, to ARDS-specific alterations of the molecular profile of surfactant. Here, we compared the two mechanisms in vitro, to assess their potential role in causing respiratory distress. Albumin and fibrinogen exposure at or above blood level concentrations served as the models for testing competitive adsorption. An elevated level of cholesterol was chosen as a known adverse change in the molecular profile of surfactant in ARDS. Bovine lipid extract surfactant (BLES) was spread from a small bolus of a concentrated suspension (27 mg/ml) to the air-water interface in a captive bubble surfactometer (CBS) and the bubble volume was cyclically reduced and increased to assess surface activity of the spread material. Concentrations of inhibitors and the concentration and spreading method of pulmonary surfactant were chosen in an attempt to reproduce the exposure of surfactant to inhibitors in the lung. Under these conditions, neither serum albumin nor fibrinogen was persistently inhibitory and normal near-zero minimum surface tension values were obtained after a small number of cycles. In contrast, inhibition by an increased level of cholesterol persisted even after extensive cycling. These results suggest that in ARDS, competitive adsorption may not sufficiently explain high surface tension, and that disruption of the surfactant film needs to be given causal consideration.  相似文献   

11.
Pulmonary surfactant is necessary to keep the terminal conducting airways patent. It is unknown whether mild to moderate airway inflammation may influence surfactant function and thus contribute to the pathogenesis of chronic airway inflammation in children. To answer this question, 21 children with chronic obstructive bronchitis and 19 asymptomatic children with long-term tracheostomy and increased numbers of neutrophils in their airways were compared with 15 healthy controls. Bronchoalveolar lavage fluid was separated into large surfactant aggregates (LA) and a supernatant containing inhibitory constituents. Surfactant function of LA, recombinations of LA and supernatant, and recombinations of a defined bovine surfactant and supernatant was assessed in a capillary surfactometer. Compared with controls, the function of the LA surfactant was reduced and there was no difference between children with tracheostomy and chronic obstructive bronchitis. The function of LA-supernatant recombinations was poor in all subjects. This may be explained by the well-known protein influx during the lavage procedure. The activity of bovine surfactant-supernatant reconstitutions was impaired in children with tracheostomy. In all surfactant mixtures assessed, surfactant function was inversely correlated to the number of neutrophils in the lavage fluid. Chronic lower airway inflammation with mild or no clinical symptoms is associated with impaired surfactant function. The dysfunction may contribute to airflow restrictions frequently observed in these children.  相似文献   

12.
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ~40 to ~90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.  相似文献   

13.
Surfactant protein B (SP-B) enhances lipid insertion into the alveolar air/liquid interface upon inhalation. The aim of this study was (i) to apply a palette of tests for a detailed biochemical and biophysical characterization of SP-B and (ii) to use these tests to compare native SP-B with a fluorescent (Bodipy) SP-B analog. The method of labeling was fast and resulted in a covalent fluorophore-protein bond. The ability of both proteins to spread a surfactant film on top of a buffer surface was determined in a spreading tray using the Wilhelmy plate technique to allow detection of alterations in surface tension and calculation of spreading velocities. In a captive bubble surfactometer surface tensions of spread films were measured. Similar biophysical properties were found for both native and Bodipy-labeled SP-B. It is concluded that the combination of tests used allows detection of small differences in structure and activity between the two proteins.  相似文献   

14.
Pulmonary surfactant is a unique mixture of lipids and surfactant-specific proteins that covers the entire alveolar surface of the lungs. Surfactant is not restricted to the alveolar compartment; it also reaches terminal conducting airways and is present in upper airway secretions. While the role of surfactant in the alveolar compartment has been intensively elucidated both in health and disease states, the possible role of surfactant in the airways requires further research. This review summarizes the current knowledge on surfactant functions regarding the airway compartment and highlights the impact of various surfactant components on allergic inflammation in asthma.  相似文献   

15.
The properties of natural bovine surfactant and its lipid extract have been examined with a pulsating bubble surfactometer which assesses the ability of surfactant lipids to adsorb to the air/liquid interface and reduce the surface tension to near 0 dynes/cm during dynamic compression. Studies conducted at 1 mg/ml phospholipid revealed that the surface activity (i.e., the ability to produce low surface tensions) of lipid extracts could be enhanced by incubating the sample at 37 degrees C for 120 min or by addition of CaCl2. In contrast, incubation at 37 degrees C only slightly improved the biophysical activity of natural surfactant and the addition of CaCl2 had a more modest effect than with lipid extracts. With 20 mM CaCl2, the surfactant activity of lipid extract surfactant was similar to that of natural surfactant. Incubation with EDTA reduced the biophysical activity of natural surfactant. Experiments in which increasing amounts of lipid extract were replaced by natural surfactant revealed that small amounts of natural surfactant enhanced the surfactant activity of lipid extract. The biophysical activity of lipid extract surfactant was also increased by the addition of soluble surfactant-associated protein-A (SP-A) (28-36 kDa) purified from natural bovine surfactant. These results indicate that SP-A (28-36 kDa) improves the surfactant activity of lipid extracts by enhancing the rate of adsorption and/or spreading of phospholipid at the air/liquid interface resulting in the formation of a stable lipid monolayer at lower bulk concentrations of either phospholipid or calcium.  相似文献   

16.
Phospholipid films can be preserved in vitro when adsorbed to a solidifiable hypophase. Suspensions of natural surfactant, lipid extract surfactants, and artificial surfactants were added to a sodium alginate solution and filled into a captive bubble surfactometer (CBS). Surfactant film was formed by adsorption to the bubble of the CBS for functional tests. There were no discernible differences in adsorption, film compressibility or minimal surface tension on quasi-static or dynamic compression for films formed in the presence or absence of alginate in the subphase of the bubble. The hypophase-film complex was solidified by adding calcium ions to the suspension with the alginate. The preparations were stained with osmium tetroxide and uranyl acetate for transmission electron microscopy. The most noteworthy findings are: (1) Surfactants do adsorb to the surface of the bubble and form osmiophilic lining layers. Pure DPPC films could not be visualized. (2) A distinct structure of a particular surfactant film depends on the composition and the concentration of surfactant in the bulk phase, and on whether or not the films are compressed after their formation. The films appear heterogeneous, and frequent vesicular and multi-lamellar film segments are seen associated with the interfacial films. These features are seen already upon film formation by adsorption, but multi-lamellar segments are more frequent after film compression. (3) The rate of film formation, its compressibility, and the minimum surface tension achieved on film compression appear to be related to the film structure formed on adsorption, which in turn is related to the concentration of the surfactant suspension from which the film is formed. The osmiophilic surface associated surfactant material seen is likely important for the surface properties and the mechanical stability of the surfactant film at the air-fluid interface.  相似文献   

17.
PLUNC (palate, lung and nasal epithelium clone) protein is an abundant secretory product of epithelia throughout the mammalian conducting airways. Despite its homology with the innate immune defence molecules BPI (bactericidal/permeability-increasing protein) and LBP (lipopolysaccharide-binding protein), it has been difficult to define the functions of PLUNC. Based on its marked hydrophobicity and expression pattern, we hypothesized that PLUNC is an airway surfactant. We found that purified recombinant human PLUNC exhibited potent surfactant activity by several different measures, and experiments with airway epithelial cell lines and primary cultures indicate that native PLUNC makes a significant contribution to the overall surface tension in airway epithelial secretions. Interestingly, we also found that physiologically relevant concentrations of PLUNC-inhibited Pseudomonas aeruginosa biofilm formation in vitro without acting directly as a bactericide. This finding suggests that PLUNC protein may inhibit biofilm formation by airway pathogens, perhaps through its dispersant properties. Our data, along with reports from other groups on activity against some airway pathogens, expand on an emerging picture of PLUNC as a multifunctional protein, which plays a novel role in airway defences at the air/liquid interface.  相似文献   

18.
Destruction of alveolar surfactant phospholipids by bacterial phospholipases is suggested to be a major virulence factor involved in bacterial pneumonia. Since Legionella pneumophila secretes phospholipase A, we analyzed phospholipid degradation in natural bovine surfactant by L. pneumophila. Phospholipids were reduced in amount after incubation with bacteria or culture supernatant of L. pneumophila serogroup 6. Free fatty acids and lysophosphatidylcholine were formed, the latter is known to be highly cytotoxic. Surface tension of surfactant as determined by pulsating bubble surfactometer increased significantly compared to the control. Phospholipase A activity seems to be a powerful agent of legionellae in causing lung disease.  相似文献   

19.
The structure of pulmonary surfactant films remains ill defined. Although plausible film fragments have been imaged by electron microscopy, questions about the significance of the findings and even about the true fixability of surfactant films by the usual fixatives glutaraldehyde (GA), osmium tetroxide (OsO(4)), and uranyl acetate (UA) have not been settled. We exposed functioning natural surfactant films to fixatives within a captive bubble surfactometer and analyzed the effect of fixatives on surfactant function. The capacity of surfactant to reach near-zero minimum surface tension on film compression was barely impaired after exposure to GA or OsO(4). Although neither GA nor OsO(4) prevented the surfactant from forming a surface active film, GA increased the equilibrium surface tension to above 30 mN/m, and both GA and OsO(4) decreased film stability as seen in the slowly rising minimum surface tension from 1 to ~5 mN/m in 10 min. In contrast, the effect of UA seriously impaired surface activity in that both adsorption and minimum surface tension were substantially increased. In conclusion, the fixatives tested in this study are not suitable to fix, i.e., to solidify, surfactant films. Evidently, however, OsO(4) and UA may serve as staining agents.  相似文献   

20.
The alveolar surface network (ASN) is the totally fluid intraacinar conformation of the alveolar surface liquid (ASL) continuum circulating, both in series and in parallel, through ultrathin (to <7 nm) molecular conduits formed by appositions of unit bubbles of alveolar gas. The ASN is the analogue of foam in vitro. Appositions of unit bubble films, namely foam films, include (a) bubble-to-bubble at the alveolar entrance, across alveolar ducts, and at pores of Kohn ('classical foam films'); (b) bubble-to-epithelial cell surface ('cell-surface foam film'); and (c) bubble-to-open surface liquid layer of the terminal conducting airways ('surface foam film'). These appositions of monolayer bubble films create (a) 'macrochannels' ('pressure points', 'reservoirs') that modulate ASL transfers, volume and flow throughout the acinus and between acinar surface and both the interstitium and the terminal conducting airways surfaces, and (b) 'microchannels' along the broadest surfaces of the appositions. 'Microchannels', which are expectedly bilayer, serve several functions, including (a) virtually frictionless orientation of unit bubbles and ASL to fill the acinar air space; (b) virtually unrestricted diffusion of respiratory gases; (c) architectural support ('infrastructure') against the 'mass' and 'recoil' force of the interstitium; and (d) provision of 'gate' and 'bridge' dynamics that further modulate and direct ASL circulation. The physiological and anatomical boundary between acinar ASN and the bubble-free open liquid surfaces of the conducting airways is marked by the surface foam film. The ASN operates as outlined above in all regions of the lung, at all lung volumes, beginning at the onset of air-breathing at birth and continuing throughout life. Reports of its discovery (Pulmonary Physiology of the Fetus, Newborn and Child (1975) 116; Pediatr. Res. 12 (1978) 1070) and subsequent confirmatory research including the adult lung are summarized in this review by progressive development of each function. These functions, which are normal for a relatively dry foam such as the ASN (where gas:liquid volume ratio is >99:1) cannot be duplicated by the conventional theories and models of an open 'alveolar lining layer'. The unfortunate research technologies upon which these theories and models have been formulated have, indeed, obfuscated recognition of the ASN in vivo. They are also presented and critiqued in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号