首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined ratings of perceived exertion (RPE) and electromyography (EMG) during resistance exercise in recreational and novice lifters. Fourteen novice (age = 21.5 +/- 1.5 years) and 14 recreationally trained (age = 21.9 +/- 2.2 years) women volunteered to perform the bench press exercise at 60 and 80% of their 1 repetition maximum (1RM). RPE and EMG were measured during both intensities. Statistical analyses revealed that active muscle RPE increased as resistance exercise intensity increased from 60% 1RM to 80% 1RM (12.32 +/- 1.81 vs. 15.14 +/- 1.74). Integrated EMG also increased as resistance exercise intensity increased from 60% 1RM to 80% 1RM (in the pectoralis major; 98.62 +/- 17.54 vs. 127.98 +/- 29.02). No significant differences in RPE or EMG were found between novice and recreational lifters. These results indicate that RPE is related to the relative exercise intensity lifted as well as muscle activity during resistance exercise for both recreational and novice lifters. These results support the use of RPE as a method of resistance exercise intensity estimation for both types of lifters.  相似文献   

2.
The swiss is widely used in the recreational training environment as a supplement to conventional resistance training. One such application is to use the swiss ball as a bench support for bench press exercise. There is no evidence to indicate that the use of a swiss ball is beneficial for resistance training exercise. This study investigated muscle activity using surface electromyography of upper-body and abdominal muscles during the concentric and eccentric phases of the bench press on and off a swiss ball. Volunteers for this study were 14 resistance-trained subjects who performed isolated concentric and eccentric bench press repetitions using the 2 test surfaces with a 2-second cadence at a load equivalent to 60% maximum force output. The average root mean square of the muscle activity was calculated for each movement, and perceived exertion during the tasks was collected using a Borg Scale. The results of the study showed that deltoid and abdominal muscle activity was increased for repetitions performed using the swiss ball. Increased deltoid muscle activity supports previous findings for increased activity when greater instability is introduced to the bench press movement. Abdominal muscle activity increases were not hypothesized, but this finding provides scientific evidence for anecdotal reasoning behind swiss ball use as a potential core stability training device.  相似文献   

3.
The purpose of this study was to investigate the effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. Pre-exhaustion exercise, a technique frequently used by weight trainers, involves combining a single-joint exercise immediately followed by a related multijoint exercise (e.g., a knee extension exercise followed by a leg press exercise). Seventeen healthy male subjects performed 1 set of a leg press exercise with and without pre-exhaustion exercise, which consisted of 1 set of a knee extension exercise. Both exercises were performed at a load of 10 repetitions maximum (10 RM). Electromyography (EMG) was recorded from the rectus femoris, vastus lateralis, and gluteus maximus muscles simultaneously during the leg press exercise. The number of repetitions of the leg press exercise performed by subjects with and without pre-exhaustion exercise was also documented. The activation of the rectus femoris and the vastus lateralis muscles during the leg press exercise was significantly less when subjects were pre-exhausted (p < 0.05). No significant EMG change was observed for the gluteus maximus muscle. When in a pre-exhausted state, subjects performed significantly (p < 0.001) less repetitions of the leg press exercise. Our findings do not support the popular belief of weight trainers that performing pre-exhaustion exercise is more effective in order to enhance muscle activity compared with regular weight training. Conversely, pre-exhaustion exercise may have disadvantageous effects on performance, such as decreased muscle activity and reduction in strength, during multijoint exercise.  相似文献   

4.
We investigated the effect of "psyching-up" on force production during the bench press. Twelve men (mean age +/- SD: 27.4 +/- 11.2 years) and 8 women (20.9 +/- 2.5 years) with strength-training experience performed 5 bench press repetitions on a modified Biodex isokinetic dynamometer during 3 interventions. The interventions were counterbalanced and included a free-choice psych-up, a cognitive distraction, and an attention-placebo. Peak force recorded after psyching-up (mean +/- SD: 764 +/- 269 N.m) was significantly different from both distraction (703 +/- 282 N.m, p = 0.003) and attention-placebo (708 +/- 248 N.m, p = 0.01). The mean percentage increase in peak force from distraction to psyching-up was 11.8% (6 to 18%, 95% confidence interval [CI]) and 8.1% from placebo to psyching-up (3 to 13%, 95% CI). The results of the present study indicate that psyching-up may increase force production during the bench press exercise in participants with at least 1 year strength-training experience.  相似文献   

5.
The objective of this study was to design and validate a three degrees of freedom model in the sagittal plane for the bench press exercise. The mechanical model was based on rigid segments connected by revolute and prismatic pairs, which enabled a kinematic approach and global force estimation. The method requires only three simple measurements: (i) horizontal position of the hand (x0); (ii) vertical displacement of the barbell (Z) and (iii) elbow angle (θ). Eight adult male throwers performed maximal concentric bench press exercises against different masses. The kinematic results showed that the vertical displacement of each segment and the global centre of mass followed the vertical displacement of the lifted mass. Consequently, the vertical velocity and acceleration of the combined centre of mass and the lifted mass were identical. Finally, for each lifted mass, there were no practical differences between forces calculated from the bench press model and those simultaneously measured with a force platform. The error was lower than 2.5%. The validity of the mechanical method was also highlighted by a standard error of the estimate (SEE) ranging from 2.0 to 6.6 N in absolute terms, a coefficient of variation (CV) ?0.8%, and a correlation between the two scores ?0.99 for all the lifts (p<0.001). The method described here, which is based on three simple parameters, allows accurate evaluation of the force developed by the upper limb muscles during bench press exercises in both field and laboratory conditions.  相似文献   

6.
The main goal of the present study was to evaluate the acute effects of blood flow restriction (BFR) at 70% of full arterial occlusion pressure on strength-endurance performance during the bench press exercise. The study included 14 strength-trained male subjects (age = 25.6 ± 4.1 years; body mass = 81.7 ± 10.8 kg; bench press 1 repetition maximum (1RM) = 130.0 ± 22.1 kg), experienced in resistance training (3.9 ± 2.4 years). During the experimental sessions in a randomized crossover design, the subjects performed three sets of the bench press at 80% 1RM performed to failure with two different conditions: without BFR (CON); and with BFR (BFR). Friedman’s test showed significant differences between BFR and CON conditions for the number of repetitions performed (p < 0.001); for peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The pairwise comparisons showed a significant decrease for peak bar velocity and mean bar velocity in individual Set 1 for BFR when compared to CON conditions (p = 0.01 for both). The two-way repeated measures ANOVA showed a significant main effect for the time under tension (p = 0.02). A post-hoc comparisons for the main effect showed a significant increase in time under tension for BFR when compared to CON (p = 0.02). The results of the presented study indicate that BFR used during strength-endurance exercise generally does not decrease the level of endurance performance, while it causes a drop in bar velocity.  相似文献   

7.
The purpose of this study was to investigate the effectiveness of instability training in the recruitment of core stabilizing muscles during dynamic multijoint movement. Surface electromyography (EMG) was measured from 6 muscles (latissimus dorsi, rectus abdominus, internal obliques, erector spinae, and soleus) while subjects performed a 9.1-kg bench press on stable and unstable surfaces. There were 4 exercises in total: (a) stable surfaces for shoulders and feet, (b) upper-body instability, (c) lower-body instability, and (d) dual instability. Five seconds of EMG were recorded during each bench press and were subsequently smoothed with root mean squares calculated for the entire time-series. A repeated-measures analysis of variance (ANOVA) was used to test overall differences between exercise conditions for each muscle. Paired equal variance t-tests with a stepwise Bonferroni correction for multiple contrasts (alpha = 0.05/total number of contrasts) were performed for muscles with significant repeated-measures ANOVA results. The results show significant increases in EMG with increasing instability. Specifically, the dual instability bench press resulted in the greatest mean muscle activation of the 3 stability conditions, with single instability conditions being significantly greater than the stable condition. This pattern of results is consistent with the position that performing the bench press in a progressively unstable environment may be an effective method to increase activation of the core stabilizing musculature, while the upper- and lower-body stabilizers can be activated differentially depending on the mode of instability.  相似文献   

8.
The main aim of the study was to compare the peak surface electromyography (sEMG) amplitude of muscles during low and high loaded bench press exercises performed to muscular failure on the dominant and non-dominant body side. Ten resistance-trained healthy males with at least six-year experience in resistance training (27.7 ± 5.6 years, 81.1 ± 5.8 kg and 175.3 ± 5.2 cm, bench press one-repetition maximum [1RM] = 98.9 ± 7.1 kg) performed the bench press at 50% and at 90%1RM. The differences in peak sEMG amplitude between body-sides and the external loads were recorded for the pectoralis major (PM), anterior deltoid (AD), and the long head of the triceps brachii (TB) during each attempt. A two-way repeated-measures ANOVAs revealed statistically significant main effect of side for AD (p < 0.001) and TB (p < 0.001) but not for PM (p = 0.168) and a significant main effect of load for TB (p < 0.001) but not for AD and PM (p = 0.229; p = 0.072; respectively). The post-hoc analysis for the main effect of side showed significantly higher peak sEMG amplitude for the dominant side compared to the non-dominant side for AD and TB at 50%1RM and 90%1RM (p < 0.001; all) with no statistically significant differences for PM (p = 0.187; p = 0.155; both loads). The post-hoc analysis for the main effect of load for TB revealed a significantly higher peak sEMG amplitude at 90%1RM compared to the 50%1RM (p = 0.009). The obtained results indicate that regardless of the external load, the peak sEMG activity of the AD, PM, and TB during the bench press exercise performed to muscular failure was higher on the dominant body-side.  相似文献   

9.
The bench press is one of the most popular weight training exercises. Although most training regimens incorporate multiple repetition sets, there are few data describing how the kinematics of a lift change during a set to failure. To examine these changes, recreational lifters (10 men and 8 women) were recruited. The maximum weight each subject could bench press (1RM) was determined. Subjects then performed as many repetitions as possible at 75% of the 1RM load. Three-dimensional kinematic data were recorded and analyzed for all lifts. Statistical analysis revealed that differences between maximal and submaximal lifts and the kinematics of a submaximal lift change as a subject approaches failure in a set. The time to lift the bar more than doubled from the first to the last repetition, causing a decrease in both mean and peak upward velocity. Furthermore, the peak upward velocity occurred much earlier in the lift phase in these later repetitions. The path the bar followed also changed, with subjects keeping the bar more directly over the shoulder during the lift. In general, most of the kinematic variables analyzed became more similar to those of the maximal lift as the subjects progressed through the set, but there was considerable variation between subjects as to which repetition was most like the maximal lift. This study shows that there are definite changes in the lifting kinematics in recreational lifters during a set to failure and suggests it may be particularly important for coaches and less-skilled lifters to focus on developing the proper bar path, rather than reaching momentary muscular failure, in the early part of a training program.  相似文献   

10.
Despite the popularity of resistance training (RT), an accurate method for quantifying its metabolic cost has yet to be developed. We applied indirect calorimetry during bench press (BP) and parallel squat (PS) exercises for 5 consecutive minutes at several steady state intensities for 23 (BP) and 20 (PS) previously trained men. Tests were conducted in random order of intensity and separated by 5 minutes. Resultant steady state VO2 data, along with the independent variables load and distance lifted, were used in multiple regression to predict the energy cost of RT at higher loads. The prediction equation for BP was Y' = 0.132 + (0.031)(X1) + (0.01)(X2), R2 = 0.728 and S(xy) = 0.16; PS can be predicted by Y' = -1.424 + (0.022)(X1) + (0.035)(X2), R2 = 0.656 and S(xy) = 0.314; where Y' is VO2 X1 is the load measured in kg and X2 is the distance in cm. Based on a respiratory exchange ratio (RER) of 1.0 and a caloric equivalent of 5.05 kcal x L(-1), VO2 was converted to caloric expenditure (kcal x min(-1)). Using those equations to predict caloric cost, our resultant values were significantly larger than caloric costs of RT reported in previous investigations. Despite a potential limitation of our equations to maintain accuracy during very high-intensity RT, we propose that they currently represent the most accurate method for predicting the caloric cost of bench press and parallel squat.  相似文献   

11.
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.  相似文献   

12.
Muscle synergies have been investigated during different types of human movement using nonnegative matrix factorization. However, there are not any reports available on the reliability of the method. To evaluate between-day reliability, 21 subjects performed bench press, in two test sessions separated by approximately 7 days. The movement consisted of 3 sets of 8 repetitions at 60% of the three repetition maximum in bench press. Muscle synergies were extracted from electromyography data of 13 muscles, using nonnegative matrix factorization. To evaluate between-day reliability, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the first test session were recomputed, using the fixed synergy components from the second test session. Two muscle synergies accounted for >90% of the total variance, and reflected the concentric and eccentric phase, respectively. The cross-correlation values were strong to very strong (r-values between 0.58 and 0.89), while the cross-validation values ranged from substantial to almost perfect (ICC3, 1 values between 0.70 and 0.95). The present findings revealed that the same general structure of the muscle synergies was present across days and the extraction of muscle synergies is thus deemed reliable.  相似文献   

13.
14.
The myoelectric signal of the sternoclavicular and clavicular portions of the pectoralis major, the biceps brachii, and the lateral head of triceps brachii of 12 healthy men was collected during an isometric hold of 5 different bench press exercises. Grip width (narrow, mid, and wide) and the level of supination/pronation was varied to determine how these factors influence myoelectric amplitude during the flat bench press. A supinated grip resulted in increased activity for the biceps brachii and the clavicular portion of the pectoralis major. Additionally, moving from wide to narrower grip widths increased triceps activity and decreased the sternoclavicular portion of the pectoralis major. However, if the grip was supinated, moving to a narrower grip position did not result in a decrease in muscle activity of the sternoclavicular portion of the pectoralis major. The increase in triceps brachii activity when moving to a narrower grip width was not influenced by the level of supination. Considering the small changes that occur during changes in grip width, the choice of grip position should be determined by the positions athletes adopt during their sport. Sport specificity should supercede attempts to train specific muscle groups.  相似文献   

15.
Effect of glucose infusion on muscle malonyl-CoA during exercise   总被引:1,自引:0,他引:1  
Previous work in this laboratory has shown that muscle malonyl-CoA, the inhibitor of carnitine palmitoyltransferase I (CPT I), decreased during exercise. Hepatic malonyl-CoA content decreases when glucose availability decreases such as during fasting or when the glucagon-to-insulin ratio increases such as during prolonged exercise or in response to insulin deficiency. To investigate the effect of glucose infusion on muscle malonyl-CoA during exercise, male rats were anesthetized (pentobarbital via venous catheters) at rest or after running (21 m/min, 15% grade) for 30 or 60 min. During exercise rats were infused with either glucose (0.625 g/ml) or saline at a rate of 1.5 ml/h. Gastrocnemius muscles and liver samples were frozen at liquid nitrogen temperature. Muscle malonyl-CoA decreased from 1.24 +/- 0.06 to 0.69 +/- 0.05 nmol/g with glucose infusion and to 0.43 +/- 0.04 nmol/g with saline infusion during 60 min of exercise. In the liver, glucose infusion prevented the drop in malonyl-CoA. This indicates that glucose infusion attenuates the progressive decline in muscle malonyl-CoA and prevents the decline in liver malonyl-CoA during prolonged exercise.  相似文献   

16.
17.
18.
The intrathoracic pressure and breathing strategy on bench press (BP) performance is highly discussed in strength competition practice. Therefore, the purpose of this study was to analyze whether different breathing techniques can influence the time and track characteristics of the sticking region (SR) during the 1RM BP exercise. 24 healthy, male adults (age 23 ± 2.4 yrs., body mass 85 ± 9.2 kg, height 181 ± 5.4 cm) performed a 1 repetition BP using the breathing technique of Valsalva maneuver (VM), hold breath, lung packing (PAC), and reverse breathing (REVB), while maximum lifted load and concentric phase kinematics were recorded. The results of ANOVA showed that the REVB breathing decreased absolute (p < 0.04) and relative lifted load (p < 0.01). The VM showed lower (p = 0.01) concentric time of the lift than the other breathing techniques. The VM and PAC showed lower SR time than other breathing techniques, where PAC showed a lower SR time than VM (p = 0.02). The PAC techniques resulted in shorter SR and pre-SR track than other breathing techniques and the REVB showed longer SR track than the other considered breathing techniques (p = 0.04). Thus, PAC or VM should be used for 1RM BP lifting according to preferences, experiences and lifting comfort of an athlete. The hold breath technique does not seem to excessively decrease the lifting load, but this method will increase the lifting time and the time spend in the sticking region, therefore its use does not provide any lifting benefit. The authors suggest that the REVB should not be used during 1 RM lifts.  相似文献   

19.
20.

Background

The addition of Swiss balls to conventional exercise programs has recently been adopted. Swiss balls are an unstable surface which may result in an increased need for force output from trunk muscles to provide adequate spinal stability or balance. The aim of the study was to determine whether the addition of a Swiss ball to upper body strength exercises results in consistent increases in trunk muscle activation levels.

Methods

The myoelectric activity of four trunk muscles was quantified during the performance of upper body resistance exercises while seated on both a stable (exercise bench) and labile (swiss ball) surface. Participants performed the supine chest press, shoulder press, lateral raise, biceps curl and overhead triceps extension. A repeated measures ANOVA with post-hoc Tukey test was used to determine the influence of seated surface type on muscle activity for each muscle.

Results & Discussion

There was no statistically significant (p < .05) difference in muscle activity between surface conditions. However, there was large degree of variability across subjects suggesting that some individuals respond differently to surface stability. These findings suggest that the incorporation of swiss balls instead of an exercise bench into upper body strength training regimes may not be justified based only on the belief that an increase spinal stabilizing musculature activity is inherent. Biomechanically justified ground based exercises have been researched and should form the basis for spinal stability training as preventative and therapeutic exercise training regimes.

Conclusion

Selected trunk muscle activity during certain upper limb strength training exercises is not consistently influenced by the replacement of an exercise bench with a swiss ball.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号