首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The NR1I subfamily of nuclear receptors contains a phylogenetically diverse array of receptors related to the mammalian pregnane X receptor (PXR) (NR1I2) and constitutive androstane receptor (CAR) (NR1I3). We have carried out an extensive comparative analysis of this subgroup with representatives from fish, birds, amphibians, and mammals. Four novel receptors were isolated from fish, dog, pig, and monkey for this study and combined with a previously reported set of related receptors including human PXR, rabbit PXR, mouse PXR, chicken CXR, frog benzoate X receptors (BXRalpha, BXRbeta), and human and mouse CAR. A broad range of xenobiotics, steroids, and bile acids were tested for their ability to activate the ligand binding domain of each receptor. Three distinct groups of receptors were identified based on their pharmacological profiles: 1) the PXRs were activated by a broad range of xenobiotics and, along with the mammalian PXRs, included the chicken and fish receptors; 2) the CARs were less promiscuous, had high basal activities, and were generally repressed rather than activated by those compounds that modulated their activity; and 3) the BXRs were selectively activated by a subset of benzoate analogs and are likely to be specialized receptors for this chemical class of ligands. The PXRs are differentiated from the other NR1I receptors by a stretch of amino acids between helices 1 and 3, which we designate the H1-3 insert. This insert was present in the mammalian, chicken, and fish PXRs but absent in the CARs and BXRs. Modeling studies suggest that the H1-3 insert contributes to the promiscuity of the PXRs by facilitating the unwinding of helices-6 and -7, thereby expanding the ligand binding pocket.  相似文献   

2.
The nuclear receptors and xenosensors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) induce the expression of xenobiotic metabolizing enzymes and transporters, which also affects various endobiotics. While human and mouse CAR feature a high basal activity and low induction upon ligand exposure, we recently identified two constitutive androstane receptors in Xenopus laevis (xlCARα and β) that possess PXR-like characteristics such as low basal activity and activation in response to structurally diverse compounds. Using a set of complementary computational and biochemical approaches we provide evidence for xlCARα being the structural and functional counterpart of mammalian PXR. A three-dimensional model of the xlCARα ligand-binding domain (LBD) reveals a human PXR-like L-shaped ligand binding pocket with a larger volume than the binding pockets in human and murine CAR. The shape and amino acid composition of the ligand-binding pocket of xlCAR suggests PXR-like binding of chemically diverse ligands which was confirmed by biochemical methods. Similarly to PXR, xlCARα possesses a flexible helix 11’. Modest increase in the recruitment of coactivator PGC-1α may contribute to the enhanced basal activity of three gain-of-function xlCARα mutants humanizing key LBD amino acid residues. xlCARα and PXR appear to constitute an example of convergent evolution.  相似文献   

3.

Background

The nuclear hormone receptor (NR) superfamily complement in humans is composed of 48 genes with diverse roles in metabolic homeostasis, development, and detoxification. In general, NRs are strongly conserved between vertebrate species, and few examples of molecular adaptation (positive selection) within this superfamily have been demonstrated. Previous studies utilizing two-species comparisons reveal strong purifying (negative) selection of most NR genes, with two possible exceptions being the ligand-binding domains (LBDs) of the pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3), two proteins involved in the regulation of toxic compound metabolism and elimination. The aim of this study was to apply detailed phylogenetic analysis using maximum likelihood methods to the entire complement of genes in the vertebrate NR superfamily. Analyses were carried out both across all vertebrates and limited to mammals and also separately for the two major domains of NRs, the DNA-binding domain (DBD) and LBD, in addition to the full-length sequences. Additional functional data is also reported for activation of PXR and the vitamin D receptor (VDR; NR1I1) to gain further insight into the evolution of the NR1I subfamily.

Results

The NR genes appear to be subject to strong purifying selection, particularly in the DBDs. Estimates of the ratio of the non-synonymous to synonymous nucleotide substitution rates (the ω ratio) revealed that only the PXR LBD had a sub-population of codons with an estimated ω ratio greater than 1. CAR was also unusual in showing high relative ω ratios in both the DBD and LBD, a finding that may relate to the recent appearance of the CAR gene (presumably by duplication of a pre-mammalian PXR gene) just prior to the evolution of mammals. Functional analyses of the NR1I subfamily show that human and zebrafish PXRs show similar activation by steroid hormones and early bile salts, properties not shared by sea lamprey, mouse, or human VDRs, or by Xenopus laevis PXRs.

Conclusion

NR genes generally show strong sequence conservation and little evidence for positive selection. The main exceptions are PXR and CAR, genes that may have adapted to cross-species differences in toxic compound exposure.
  相似文献   

4.
5.
6.
Functional and structural comparison of PXR and CAR   总被引:4,自引:0,他引:4  
The nuclear receptors pregnane X receptor (PXR, NR1I2) and constitutive active receptor (CAR, NR1I3) have both been proposed to function as xenosensors, but the details of their respective physiological roles are still being elucidated. We have contrasted these two receptors in a variety of experiments including gene expression assays, cell-based ligand profiling assays, and crystallographic/structural modeling analyses. These data highlight key differences between PXR and CAR.  相似文献   

7.
BACKGROUND: Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals. RESULTS: To explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR. CONCLUSION: Our finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species.  相似文献   

8.
9.
Decreased drug metabolism, hyperbilirubinemia and intrahepatic cholestasis are frequently observed during inflammation. Additionally, it has long been appreciated that exposure to drug metabolism-inducing xenobiotics can impair immune function. The nuclear receptor CAR (constitutive androstane receptor or NR1I3) and PXR (pregnane X receptor, NR1I2) control phase I (cytochrome P450 2B and 3A), phase II (GSTA, UGT1A1), and transporter (MDR1, SLC21A6, MRP2) genes involved in drugs metabolism, bile acids and bilirubin clearance in response to xenobiotics. It is well known that inflammation, through the activation of NF-kappaB pathway, leads to a decrease of CAR, PXR and RXRalpha expression and the expression of their target genes. In addition, a new study reveals the mutual repression between PXR and NF-kappaB signaling pathways, providing a molecular mechanism linking xenobiotic metabolism and inflammation.  相似文献   

10.
11.
12.
A double null mouse line (2XENKO) lacking the xenobiotic receptors CAR (constitutive androstane receptor) (NR1I3) and PXR (pregnane X receptor) (NR1I2) was generated to study their functions in response to potentially toxic xenobiotic and endobiotic stimuli. Like the single knockouts, the 2XENKO mice are viable and fertile and show no overt phenotypes under normal conditions. As expected, they are completely insensitive to broad range xenobiotic inducers able to activate both receptors, such as clotrimazole and dieldrin. Comparisons of the single and double knockouts reveal specific roles for the two receptors. Thus, PXR does not contribute to the process of acetaminophen hepatotoxicity mediated by CAR, but both receptors contribute to the protective response to the hydrophobic bile acid lithocholic acid (LCA). As previously observed with PXR (Xie, W., Radominska-Pandya, A., Shi, Y., Simon, C. M., Nelson, M. C., Ong, E. S., Waxman, D. J., and Evans, R. M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 3375-3380), pharmacologic activation of CAR induces multiple LCA detoxifying enzymes and provides strong protection against LCA toxicity. Comparison of their responses to LCA treatment demonstrates that CAR predominantly mediates induction of the cytochrome p450 CYP3A11 and the multidrug resistance-associated protein 3 transporter, whereas PXR is the major regulator of the Na+-dependent organic anion transporter 2. These differential responses may account for the significant sensitivity of the CAR knockouts, but not the PXR knockouts, to an acute LCA dose. Because this sensitivity is not further increased in the 2XENKO mice, CAR may play a primary role in acute responses to this toxic endobiotic. These results define a central role for CAR in LCA detoxification and show that CAR and PXR function coordinately to regulate both xenobiotic and bile acid metabolism.  相似文献   

13.

Background  

The vitamin D receptor (VDR) and pregnane X receptor (PXR) are nuclear hormone receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the genome of the chordate invertebrate Ciona intestinalis (sea squirt). VDR genes have been detected in a wide range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish. In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon marinus), zebrafish (Danio rerio), and African clawed frog (Xenopus laevis).  相似文献   

14.
15.
Timsit YE  Negishi M 《Steroids》2007,72(3):231-246
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.  相似文献   

16.
17.
18.
The constitutive androstane receptor CAR is a xenosensing nuclear receptor that can be activated by natural polyphenols such as flavonoids and catechins. We examined alcoholic beverage phytochemicals for their ability to activate CAR. HepG2 cells were transfected with CAR expression vector and its reporter gene, and then treated with trans-resveratrol, ellagic acid, β-caryophyllene, myrcene, and xanthohumol. A luciferase assay revealed that ellagic acid and trans-resveratrol activated both human and mouse CAR. Since CAR regulates many genes involved in energy metabolism, the possibility exists that these polyphenols would reduce the risk of certain alcohol-induced metabolic disorders with the help of CAR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号