首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT: Argus, CK, Gill, ND, and Keogh, JWL. Characterization of the differences in strength and power between different levels of competition in rugby union athletes. J Strength Cond Res 26(10): 2698-2704, 2012-Levels of strength and power have been used to effectively discriminate between different levels of competition; however, there is limited literature in rugby union athletes. To assess the difference in strength and power between levels of competition, 112 rugby union players, including 43 professionals, 19 semiprofessionals, 32 academy level, and 18 high school level athletes, were assessed for bench press and box squat strength, and bench throw, and jump squat power. High school athletes were not assessed for jump squat power. Raw data along with data normalized to body mass with a derived power exponent were log transformed and analyzed. With the exception of box squat and bench press strength between professional and semiprofessional athletes, higher level athletes produced greater absolute and relative strength and power outputs than did lower level athletes (4-51%; small to very large effect sizes). Lower level athletes should strive to attain greater levels of strength and power in an attempt to reach or to be physically prepared for the next level of competition. Furthermore, the ability to produce high levels of power, rather than strength, may be a better determinate of playing ability between professional and semiprofessional athletes.  相似文献   

2.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

3.
The sport of strongman is relatively new; hence, specific research investigating this sport is currently very limited. The purpose of this study was to determine the relationships between anthropometric dimensions and maximal isoinertial strength to strongman performance in novice strongman athletes. Twenty-three semiprofessional rugby union players with considerable resistance training and some strongman training experience (age 22.0 ± 2.4 years, weight 102.6 ± 10.8 kg, height 184.6 ± 6.5 cm) were assessed for anthropometry (height, body composition, and girth measurements), maximal isoinertial performance (bench press, squat, deadlift, and power clean), and strongman performance (tire flip, log clean, and press, truck pull, and farmer's walk). The magnitudes of the relationships were determined using Pearson correlation coefficients, and interpreted qualitatively according to Hopkins (90% confidence limits ~±0.37). The highest relationship observed was between system force (body mass + squat 1-repetition maximum) and overall strongman performance (r = 0.87). Clear moderate to very large relationships existed between performance in all strongman events and the squat (r = 0.61-0.85), indicating the importance of maximal squat strength for strongman competitors. Flexed arm girth and calf girth were the strongest anthropometric correlates of overall strongman performance (r = 0.79 and 0.70, respectively). The results of this study suggest that body structure and common gymnasium-based exercise strength are meaningfully related to strongman performance in novice strongman athletes. Future research should investigate these relationships using more experienced strongman athletes and determine the relationships between changes in anthropometry, isoinertial strength, and strongman performance to determine the role of anthropometry and isoinertial strength in the sport of strongman.  相似文献   

4.
The purpose of this study was to investigate the effectiveness of 4 weeks of low-intensity resistance training with blood-flow occlusion on upper and lower body muscular hypertrophy and muscular strength in National Collegiate Athletic Association Division IA football players. There were 32 subjects (average age 19.2 ± 1.8 years) who were randomized to an occlusion group or control group. The athletes performed 4 sets of bench press and squat in the following manner with or without occlusion: 30 repetitions of 20% predetermined 1 repetition maximum (1RM), followed by 3 sets of 20 repetitions at 20% 1RM. Each set was separated by 45 seconds. The training duration was 3 times per week, after the completion of regular off-season strength training. Data collected included health history, resting blood pressure, pretraining and posttraining bench press and squat 1RM, upper and lower chest girths, upper and lower arm girths, thigh girth, height, and body mass. The increases in bench press and squat 1RM (7.0 and 8.0%, respectively), upper and lower chest girths (3 and 3%, respectively), and left upper arm girth were significantly greater in the experiment group (p < 0.05). Occlusion training could provide additional benefits to traditional strength training to improve muscular hypertrophy and muscular strength in collegiate athletes.  相似文献   

5.
The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest? instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest? instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p < 0.05) (R2 = 0.92); bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.  相似文献   

6.
The purpose of this study was to examine the effects of both intensity and volume of training during a 2 d.wk(-1) in-season resistance-training program (RTP) for American football players. Fifty-three National Collegiate Athletic Association Division III football players were tested in the 1 repetition maximum (1RM) bench press and 1RM squat on the first day of summer training camp (PRE) and during the final week of the regular season (POST). Subjects were required to perform 3 sets of 6-8 repetitions per exercise. Significant strength improvements in squat were observed from PRE (155.0 +/- 31.8 kg) to POST (163.3 +/- 30.0 kg), whereas no PRE to POST changes in bench press were seen (124.7 +/- 21.0 kg vs.123.9 +/- 18.6 kg, respectively). Training volume and training compliance were not related to strength improvement. Further analysis showed that athletes training at >or=80% of their PRE 1RM had significantly greater strength improvements than athletes training at <80% of their PRE 1RM, for both bench press and squat. Strength improvements can be seen in American football players, during an in-season RTP, as long as exercise intensity is >or=80% of the 1RM.  相似文献   

7.
The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.  相似文献   

8.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

9.
The present study had as objectives (1) to compare the morphological and functional characteristics of the male judo players of the Brazilian Team A (n=7) with the judo players of Teams B and C (reserves; n=15), and (2) to verify the association between the variables measured. Thus, 22 athletes from the seven Olympic weight categories were submitted to: a body composition evaluation (body mass, height, ten skinfolds, eight circumferences, three bone diameters and percent body fat estimation); the Special Judo Fitness Test (SJFT); maximal strength tests (one repetition-maximum, 1 RM, in bench press, row, and squat); and the Cooper test. One-way analysis of covariance was used to compare the groups. The relationships between variables were determined by the Pearson coefficient correlation. The significance level was fixed at 5%. No significant difference was found in any variable between them. The main significant correlations observed were between the following variables: VO2max and number of throws in the SJFT (r=0.79); percent body fat and estimated VO2max (r=-0.83) and number of throws in the SJFT (r=-0.70); chest circumference and bench press 1 RM (r=0.90) and in the row (r=0.80); and thigh circumference and squat 1 RM (r=0.86). However, there was no significant correlation between circumferences and 1 RM/kg of body mass. According to these results the main conclusions are: (1) the physical variables measured do not discriminate performance when analysis is directed to the best athletes; (2) a higher percent body fat is negatively correlated with performance in activities with body mass locomotion (Cooper test and the SJFT); (3) judo players with higher aerobic power performed better in high-intensity intermittent exercise; (4) judo players with bigger circumferences present bigger absolute maximal strength.  相似文献   

10.
This study was undertaken to determine whether combined elastic and free weight resistance (CR) provides different strength and power adaptations than free weight resistance (FWR) training alone. Forty-four young (age 20 +/- 1 years), resistance-trained (4 +/- 2 years' experience) subjects were recruited from men's basketball and wrestling teams and women's basketball and hockey teams at Cornell University. Subjects were stratified according to team, then randomly assigned to the control (C; n = 21) or experimental group (E; n = 23). Before and after 7 weeks of resistance training, subjects were tested for lean body mass, 1 repetition maximum back squat and bench press, and peak and average power. Both C and E groups performed identical workouts except that E used CR (i.e., elastic resistance) for the back squat and bench press, whereas the C group used FWR alone. CR was performed using an elastic bungee cord attached to a standard barbell loaded with plates. Elastic tension was accounted for in an attempt to equalize the total work done by each group. Statistical analyses revealed significant (P < 0.05) between-group differences after training. Compared with C, improvement for E was nearly three times greater for back squat (16.47 +/- 5.67 vs. 6.84 +/- 4.42 kg increase), two times greater for bench press (6.68 +/- 3.41 vs. 3.34 +/- 2.67 kg increase), and nearly three times greater for average power (68.55 +/- 84.35 vs. 23.66 +/- 40.56 watt increase). Training with CR may be better than FWR alone for developing lower and upper body strength, and lower body power in resistance-trained individuals. Long-term effects are unclear, but CR training makes a meaningful contribution in the short term to performance adaptations of experienced athletes.  相似文献   

11.
The purpose of the present study was to assess the relationships between maximal strength and muscular endurance test scores additionally to previously widely studied measures of body composition and maximal aerobic capacity. 846 young men (25.5 ± 5.0 yrs) participated in the study. Maximal strength was measured using isometric bench press, leg extension and grip strength. Muscular endurance tests consisted of push-ups, sit-ups and repeated squats. An indirect graded cycle ergometer test was used to estimate maximal aerobic capacity (V(O2)max). Body composition was determined with bioelectrical impedance. Moreover, waist circumference (WC) and height were measured and body mass index (BMI) calculated. Maximal bench press was positively correlated with push-ups (r = 0.61, p < 0.001), grip strength (r = 0.34, p < 0.001) and sit-ups (r = 0.37, p < 0.001) while maximal leg extension force revealed only a weak positive correlation with repeated squats (r = 0.23, p < 0.001). However, moderate correlation between repeated squats and V(O2)max was found (r = 0.55, p < 0.001) In addition, BM and body fat correlated negatively with muscular endurance (r = -0.25 - -0.47, p < 0.001), while FFM and maximal isometric strength correlated positively (r = 0.36-0.44, p < 0.001). In conclusion, muscular endurance test scores were related to maximal aerobic capacity and body fat content, while fat free mass was associated with maximal strength test scores and thus is a major determinant for maximal strength. A contributive role of maximal strength to muscular endurance tests could be identified for the upper, but not the lower extremities. These findings suggest that push-up test is not only indicative of body fat content and maximal aerobic capacity but also maximal strength of upper body, whereas repeated squat test is mainly indicative of body fat content and maximal aerobic capacity, but not maximal strength of lower extremities.  相似文献   

12.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

13.
The purpose of this study was to (a) develop a functional field test to assess the role of the core musculature and its impact on sport performance in an athletic population and (b) develop a functional field test to determine how well the core can transfer forces from the lower to the upper extremities. Twenty-five DI collegiate football players performed medicine ball throws (forward, reverse, right, and left) in static and dynamic positions. The results of the medicine ball throws were compared with several athletic performance measurements: 1 repetition maximum (1RM) squat, squat kg/bw, 1RM bench press, bench kg/bw, countermovement vertical jump (CMJ), 40-yd dash (40 yd), and proagility (PrA). Push press power (PWR) was used to measure the transfer of forces through the body. Several correlations were found in both the static and dynamic medicine ball throws when compared with the performance measures. Static reverse correlated with CMJ (r = 0.44), 40 yd (r = 0.5), and PrA (r = 0.46). Static left correlated with bench kg/bw (0.42), CMJ (0.44), 40 yd (0.62), and PrA (0.59). Static right also correlated with bench kg/bw (0.41), 40 yd (0.44), and PrA (0.65). Dynamic forward (DyFw) correlated with the 1RM squat (r = 0.45) and 1RM bench (0.41). Dynamic left and Dynamic right correlated with CMJ, r = 0.48 and r = 0.40, respectively. Push press power correlated with bench kg/bw (0.50), CMJ (0.48), and PrA (0.48). A stepwise regression for PWR prediction identified 1RM squat as the best predictor. The results indicate that core strength does have a significant effect on an athlete's ability to create and transfer forces to the extremities. Currently, plank exercises are considered an adequate method of training the core for athletes to improve core strength and stability. This is a problem because it puts the athletes in a nonfunctional static position that is very rarely replicated in the demands of sport-related activities. The core is the center of most kinetic chains in the body and should be trained accordingly.  相似文献   

14.
Accurate correlations between a wide range of physical fitness measures and occupational demands are needed in order to identify specific fitness tests and training needs for firefighters. Twenty professional firefighters performed numerous fitness and job-related performance tests. Pearson product moment correlations were performed to identify the relationship between fitness components and job performance. Significant correlations (p <0.05) with job performance were identified for total fitness (r = -0.62), bench press strength (r = -0.66), hand grip strength (r = -0.71), bent-over row endurance (r = -0.61), bench press endurance (r = -0.73), shoulder press endurance (r = -0.71), bicep endurance (r = -0.69), squat endurance (r = -0.47), and 400-m sprint time (r = 0.79). It is apparent that firefighting taxes virtually all aspects of physical fitness. These data can help the exercise specialist choose appropriate tests and prescribe specific fitness programs for firefighters. Traditional firefighter exercise programs focusing mainly on cardiovascular fitness should be replaced with physical conditioning programs that address all components of fitness.  相似文献   

15.
Strength testing is often used with team-sport athletes, but some measures of strength may have limited prognostic/diagnostic value in terms of the physical demands of the sport. The purpose of this study was to investigate relationships between sprint ability and the kinetic and kinematic outputs of a machine squat jump. Thirty elite level rugby union and league athletes with an extensive resistance-training background performed bilateral concentric-only machine squat jumps across loads of 20% to 90% 1 repetition maximum (1RM), and sprints over 10 meters and 30 or 40 meters. The magnitudes of the relationships were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.3. Correlations of 10-meter sprint time with kinetic and kinematic variables (force, velocity, power, and impulse) were generally positive and of moderate to strong magnitude (r = 0.32-0.53). The only negative correlations observed were for work, although the magnitude was small (r = -0.18 to -0.26). The correlations for 30- or 40-meter sprint times were similar to those for 10-meter times, although the correlation with work was positive and moderate (r = 0.35-0.40). Correlations of 10-meter time with kinetic variables expressed relative to body mass were generally positive and of trivial to small magnitude (r = 0.01-0.29), with the exceptions of work (r = -0.31 to -0.34), and impulse (r = -0.34 to -0.39). Similar correlations were observed for 30- and 40-meter times with kinetic measures expressed relative to body mass. Although correlations do not imply cause and effect, the preoccupation with maximizing power output in this particular resistance exercise to improve sprint ability appears problematic. Work and impulse are potentially important strength qualities to develop in the pursuit of improved sprinting performance.  相似文献   

16.
This study compared the effectiveness of ratio and allometric scaling for normalizing speed, power, and strength in elite male rugby union players. Thirty rugby players (body mass [BM] 107.1 ± 10.1 kg, body height [BH] 187.8 ± 7.1 cm) were assessed for sprinting speed, peak power during countermovement jumps and squat jumps, and horizontal jumping distance. One-repetition maximum strength was assessed during a bench press, chin-up, and back squat. Performance was normalized using ratio and allometric scaling (Y/X), where Y is the performance, X, the body size variable (i.e., BM or BH), and b is the power exponent. An exponent of 1.0 was used during ratio scaling. Allometric scaling was applied using proposed exponents and derived exponents for each data set. The BM and BH variables were significantly related, or close to, performance during the speed, power and/or strength tests (p < 0.001-0.066). Ratio scaling and allometric scaling using proposed exponents were effective in normalizing performance (i.e., no significant correlations) for some of these tests. Allometric scaling with derived exponents normalized performance across all the tests undertaken, thereby removing the confounding effects of BM and BH. In terms of practical applications, allometric scaling with derived exponents may be used to normalize performance between larger rugby forwards and smaller rugby backs, and could provide additional information on rugby players of similar body size. Ratio scaling may provide the best predictive measure of performance (i.e., strongest correlations).  相似文献   

17.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

18.
The purpose of this study was to compare linear (LT) with nonlinear (NL) in-season training programs in freshman football players during the course of 2 separate seasons. During the first year (n = 14, mean +/- SD = 177.3 +/- 4.8 cm, 88.0 +/- 9.7 kg), the LT program was employed 2 days per week. In the second year (n = 14, 175.0 +/- 7.1 cm, 94.2 +/- 20.5 kg), a 2 days per week LT was used. Subjects were tested for maximal strength in the squat (1 repetition maximum [1RM]) and bench press (1RM) exercises. A significant improvement in 1RM squat was seen in LT, but not in NL. No significant improvement in 1RM bench press was seen in either group. A significant difference between LT and NL was observed in Delta1RM squat (13.8 +/- 7.4 kg compared with 1.6 +/- 2.6 kg, respectively). Results of this study suggest that LT may be more effective in eliciting strength gains than NL in freshman football players during an in-season training program.  相似文献   

19.
The purpose of this study was to develop a regression equation capable of accurately predicting a 1 repetition maximum bench press in collegiate women athletes. The findings of this study could benefit future women athletes by providing coaches and trainers with an easy method of determining maximum upper body strength in women athletes. Sixty-five University of Georgia NCAA Division 1 women athletes from 9 different sports were measured prior to the start of their season utilizing 2 repetition tests to fatigue (25 kg: REPS55; 31.8 kg: REPS70) and a 1 repetition maximum (1RM) bench press test in random order. Other independent variables that were used with a submaximal weight to predict 1RM were total body weight, lean body mass (LBM), height, and percent body fat. The variables of REPS70 and LBM were the best predictors of 1RM utilizing Pearson product correlations (r = 0.909, p = 0.000; r = 0.445, p = 0.000) and multiple regression results (R(2) = 0.834, p = 0.000) for this population. The results from this study indicate muscular endurance repetitions using an absolute weight of 31.8 kg in conjunction with LBM can be used to accurately predict 1RM bench press strength in collegiate women athletes.  相似文献   

20.
In rugby union, physical characteristics may partially contribute to long-term career progression, especially during adolescence. Therefore, the primary purpose of the study was to evaluate Italian regional rugby union academy players’ (i.e., under-18) anthropometric and physical characteristics during a competitive season. Body mass, height, upper- and lower-body maximal strength, sprint, and high-intensity running ability were assessed in 29 elite players (backs, n = 13, forwards, n = 16). A mixed-design analysis of variance (ANOVA) for repeated measures showed that backs were shorter (ES = 0.59), lighter (ES = 0.94), stronger relative to body mass (bench press; ES = 0.60; deadlift; ES = 0.63; clean ES = 0.63; rowing ES = 0.67), and fitter (shuttle run max; ES = 0.38; shuttle run tot; ES = 0.79) than forwards. However, the forwards achieved greater sprint momentum (initial sprint momentum; ES = 0.97; maximal sprint momentum; ES = 0.98). During the season, players changed in stature, upper-body maximal strength, jumping, and high intensity running (p < 0.05), but not in body weight or lower-body maximal strength (p > 0.05). Maximal strength improved in the first part of the season, whereas jumping and sprinting performances increased in the last part of the season. Therefore, these findings highlight the importance of regularly monitoring the physical development in a long-term perspective, even suggesting that physiological adaptations are heterochronic between positional roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号