首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Mier, CM, Alexander, RP, and Mageean, AL. Achievement of V[Combining Dot Above]O2max criteria during a continuous graded exercise test and a verification stage performed by college athletes. J Strength Cond Res 26(10): 2648-2654, 2012-The purpose of this study was to determine the incidence of meeting specific V[Combining Dot Above]O2max criteria and to test the effectiveness of a V[Combining Dot Above]O2max verification stage in college athletes. Thirty-five subjects completed a continuous graded exercise test (GXT) to volitional exhaustion. The frequency of achieving various respiratory exchange ratio (RER) and age-predicted maximum heart rate (HRmax) criteria and a V[Combining Dot Above]O2 plateau within 2 and 2.2 ml·kg·min (<2SD of the expected increase in V[Combining Dot Above]O2) were measured and tested against expected frequencies. After 10 minutes of active recovery, 10 subjects who did not demonstrate a plateau completed a verification stage performed at supramaximal intensity. From the GXT, the number of subjects meeting V[Combining Dot Above]O2max plateau was 5 (≤2 ml·kg·min) and 7 (≤2.2 ml·kg·min), RER criteria 34 (≥1.05), 32 (≥1.10), and 24 (≥1.15), HRmax criteria, 35 (<85%), 29 (<10 b·min) and 9 (HRmax). The V[Combining Dot Above]O2max and HRmax did not differ between GXT and the verification stage (53.6 ± 5.6 vs. 55.5 ± 5.6 ml·kg·min and 187 ± 7 vs. 187 ± 6 b·min); however, the RER was lower during the verification stage (1.15 ± 0.06 vs. 1.07 ± 0.07, p = 0.004). Six subjects achieved a similar V[Combining Dot Above]O2 (within 2.2 ml·kg·min), whereas 4 achieved a higher V[Combining Dot Above]O2 compared with the GXT. These data demonstrate that a continuous GXT limits the college athlete's ability to achieve V[Combining Dot Above]O2max plateau and certain RER and HR criteria. The use of a verification stage increases the frequency of V[Combining Dot Above]O2max achievement and may be an effective method to improve the accuracy of V[Combining Dot Above]O2max measurements in college athletes.  相似文献   

2.
Exercise-induced muscle damage (EIMD) has been shown to reduce force production and result in delayed-onset soreness and pain in the damaged muscle(s). Cycling in the presence of EIMD reduces peak power output and time-trial performance. However, its effect on peak aerobic capacity has not been widely studied. The purpose of this study was to examine the impact of EIMD targeted specifically to the quadriceps muscle group on peak oxygen consumption (V[Combining Dot Above]O2peak) during cycling. Ten participants (4 men, 6 women) completed a V[Combining Dot Above]O2peak test on a cycle ergometer before and 48 hours after performing 24 eccentric contractions with their right and left quadriceps with a weight equal to 120% of 1-repetition maximal concentric strength (1RM). The EIMD was assessed using 1RM, and muscle soreness was assessed using a 100-mm visual analog scale. The presence of EIMD was confirmed by a 9% reduction in 1RM (p = 0.0001) and increased ratings of soreness from 2.4 ± 2.1 to 24.6 ± 10.8 mm (p = 0.001). The V[Combining Dot Above]O2peak was reduced from 46.2 ± 9.7 to 41.8 ± 10.7 ml·kg·min (10%; p = 0.01) with participants terminating exercise at lower heart rates 191 ± 9 vs. 186 ± 10 b·min (p = 0.02) and power output 248 ± 79 vs. 238 ± 81 W (p = 0.02) after EIMD. Additionally, ventilatory threshold decreased from 34.2 ± 7.8 to 30.5 ± 8.5 ml·kg·min (11%; p = 0.031). Despite the reduction in V[Combining Dot Above]O2peak, cycling economy (p = 0.17) did not differ pre-EIMD and post-EIMD. These findings indicate that EIMD reduced peak aerobic exercise capacity to an extent that could result in meaningful reductions in exercise performance. The reduction is likely attributable to a combination of reduced strength, earlier accumulation of lactic acid, and heightened muscle pain during exercise.  相似文献   

3.
4.
ABSTRACT: Burden, RJ and Glaister, M. The effects of ionized and nonionized compression garments on sprint and endurance cycling. J Strength Cond Res 26(10): 2837-2843, 2012-The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, V[Combining Dot Above]O2max: 50.86 ± 6.81 ml·kg·min) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit V[Combining Dot Above]O2max [pV[Combining Dot Above]O2max] + 3 minutes recovery at 40% pV[Combining Dot Above]O2max + 30-second Wingate test + 3 minutes recovery at 40% pV[Combining Dot Above]O2max) and 3 endurance trials (30 minutes at 60% pV[Combining Dot Above]O2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L, 95% likely range: 0.1-1.1 mmol·L). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.  相似文献   

5.
The purpose was to assess the short-term effects of quercetin supplementation on aerobically demanding soldier performance. In a double-blind crossover study, 16 male soldiers performed 3 days of aerobically demanding exercise under 3 conditions: Baseline (B), Placebo (P), and Quercetin (Q). Day 1 was a treadmill V[Combining Dot Above]O?peak test. Days 2 and 3 were identical, consisting of 75 minutes of loaded treadmill marching (LM) and a subsequent cycling time trial (TT) to complete 200 kJ of work. After B condition, the soldiers consumed 2 energy bars, each containing 0 mg (placebo) or 500 mg of quercetin (1,000 mg·d?1) for 8.5 days. Beginning day 6 of supplementation, the soldiers performed the 3 exercise days. There was a significant (p < 0.05) increase in plasma Q after Q supplementation. Repeated measures analyses of variance revealed no differences after P or Q supplementation as compared with B in V[Combining Dot Above]O?peak (B = 48.9 ± 1.1, P = 49.3 ± 1.1, Q = 48.8 ± 1.2 ml·kg?1·min?1) or TT time (B = 18.4 ± 1.0, P = 18.5 ± 1.1, Q = 18.3 ± 1.0 minutes [mean day 1 and day 2]). The respiratory exchange ratio during LM did not differ across treatments (B = 0.87 ± 0.03, P = 0.87 ± 0.03, Q = 0.86 ± 0.04 [mean day 1 and day 2]). Ratings of perceived exertion were not affected by Q supplementation during the V[Combining Dot Above]O?peak test, LM or TT. Supplementation of 1,000 mg·d?1 of quercetin for 8.5 days had no positive effect on aerobically demanding soldier performance. It is possible that a different dosing regimen, a combination of antioxidants or a different form of quercetin supplementation, may be needed to produce an increase in soldier performance.  相似文献   

6.
Previous research has related the results of tests of maximum aerobic capacity to performance for endurance athletes. These results are often only able to predict the running velocity of races such as the marathon. This investigation sought to determine the absolute V[Combining Dot Above]O2 at various respiratory exchange ratio (RER) values (0.85, 0.90, 0.95, 1.0, 1.05, and 1.10) by using a third-order polynomial regression to model the physiological responses for V[Combining Dot Above]O2 and RER obtained from an assessment of maximum aerobic capacity. The V[Combining Dot Above]O2 determined was subsequently correlated to race performance. The participants in the study were selected from a population of National Collegiate Athletic Association Division 1 crosscountry runners (male n = 7, female n = 7, age 20.5 ± 0.9 years; height 170.3 ± 8.2 cm; weight 59.7 ± 8.7 kg; V[Combining Dot Above]O2max 57.0 ± 7.8 ml O2·kg·min). Third-order regression analysis resulted in strong curve fitting between the variables (r = 0.949 ± 0.03). Partial correlations (controlled for weight) were used to assess the relationship between oxygen consumption at the desired points of RER and race performance. The partial correlations revealed that the absolute oxygen consumptions at all RER points of interest were significantly correlated to race performance (r > 0.740, p < 0.01). There was a significant difference in the strength of the correlations for the points RER 0.95 (t = 2.68957, p = 0.01), 1.0 (t = 2.18516, p = 0.03), and 1.05 (t = 1.85668, p = 0.04) and the correlations found for RER 0.85. After converting the oxygen consumption at the RER points to estimated horizontal running speeds, only the estimate at RER 1.05 was not statistically different from the actual speed achieved in the culminating XC race. It can be suggested based upon these results that coaches of collegiate crosscountry runners who engage in metabolic testing of athletes examine the estimated running pace at RER 1.05 to gain an insight into a runner's potential.  相似文献   

7.
The purpose of this study was to investigate the effects of isocaloric carbohydrate (CHO) and carbohydrate-protein (CHO-Pro) supplements on time to exhaustion. Eleven moderately aerobically fit adults (V[Combining Dot Above]O2max= 48.3 ± 6.5 ml·kg·min) performed a maximal cycle ergometer test for the determination of V[Combining Dot Above]O2max. At least 72 hours later, the participants performed a time-to-exhaustion test at a power output equivalent to the power output when subjects were at 75% of their V[Combining Dot Above]O2max. Either the CHO or the CHO-Pro supplement was administered at 0, 30, 60, 90, and 120 minutes after this test. After 3 hours of recovery and supplement ingestion, a second time-to-exhaustion test was performed. This testing protocol was repeated for the third visit, but the supplement not given during the second visit was administered. The results indicated that there was no significant difference in time to exhaustion after isocaloric CHO (pretest 22.4 ± 2.84 minutes, posttest 25.4 ± 4.45 minutes) and CHO-Pro (pretest 22.3 ± 3.46 minutes, posttest 24.0 ± 5.08 minutes) supplementation. Carbohydrate and CHO-Pro ingestion after exercise appear to have similar effects on short-term recovery.  相似文献   

8.
ABSTRACT: K?klü, Y, Ers?z, G, Alemdaro?lu, U, A???, A, and ?zkan, A. Physiological responses and time-motion characteristics of 4-A-side small-sided game in young soccer players: The influence of different team formation methods. J Strength Cond Res 26(11): 3118-3123, 2012-The purpose of this study was to examine the influence of different team formation methods on the physiological responses to and time-motion characteristics of 4-a-side small-sided games (SSG4) in young soccer players. Thirty-two young soccer players (age 16.2 ± 0.7 years; height 172.9 ± 6.1 cm; body mass 64.1 ± 7.7 kg) voluntarily participated in this study. Anthropometric measurements, technical tests, and maximum oxygen uptake (V[Combining Dot Above]O2max) tests were carried out on the players. The SSG4 teams were then created using 4 different methods: according to the coaches' subjective evaluation (CE), technical scores (TS), V[Combining Dot Above]O2max (AP), and V[Combining Dot Above]O2max multiplied by TSs (CG). The teams thus created played 4 bouts of SSG4 at 2-day intervals. During the SSG4, heart rate (HR) responses, distance covered, and time spent in HRmax zones were recorded. In addition, rating of perceived exertion (RPE) and blood lactate level (La) were determined at the end of the last bout of each SSG4. Percent of HRmax (%HRmax), La, and RPE responses during SSG4 were significantly higher for teams chosen according to AP and CG compared with that according to CE and TS (p < 0.05). In addition, teams chosen by AP and CG spent significantly more time in zone 4 (>90% HRmax ) and covered a greater distance in the high-intensity running zone (>18 km·h) than did teams formed according to TS. Moreover, AP teams covered significantly greater total distance than TS teams did (p < 0.05). In conclusion, to spend more time in both the high-intensity HR zone and the high-intensity running zone, the teams in SSG4 should be formed according to the players' V[Combining Dot Above]O2max values or the values calculated using both the V[Combining Dot Above]O2max and technique scores.  相似文献   

9.
Elite crosscountry skiers use both the V1 and V2 techniques on moderate and steep inclines despite previous studies suggesting that the V1 technique is superior in terms of lower O2-cost and better performance on these inclines. However, this has not been studied in elite athletes, and therefore, the aim of this study was to compare O2-cost in these 2 main ski skating techniques in a group of 14 elite male crosscountry skiers (age: 24 ± 3 years, height: 184 ± 6 cm, weight: 79 ± 7 kg, V1 V[Combining Dot Above]O2max: 71.8 ± 3.5 ml·kg·min). With both techniques, the athletes performed submaximal trials for the determination of O2-cost on a roller ski treadmill at 4, 5, and 6° (3 m·s) and maximal trials at 8° (≥3 m·s) for the determination of V[Combining Dot Above]O2max. Video-based kinematic analyses on cycle length and cycle rate (CR) were performed to unravel if there was any relation between these variables and O2-cost. No significant differences in O2-cost or V[Combining Dot Above]O2max between techniques were found. However, large and significant individual variations in physiological response were observed. V2 had a longer cycle length and lower CR than V1 did. No significant correlation was found between CR and O2-cost. This study shows that both V1 and V2 are appropriate techniques for optimizing O2-cost on moderate to steep inclines in elite skiers. However, individual variation suggests that ski skating performance on moderate to steep inclines may be determined by technique preferences of the athletes.  相似文献   

10.
Surface electromyography (EMG) can assess muscle recruitment patterns during cycling, but has limited applicability to studies of deep muscle recruitment and electrically stimulated contractions. We determined whether muscle recruitment timing could be inferred from MRI-measured transverse relaxation time constant (T(2)) changes and a cycle ergometer modified to vary power as a function of pedal angle. Six subjects performed 6 min of single-leg cycling under two conditions (E0°-230° and E90°-230°), which increased the power from 0°-230° and 90-230° of the pedal cycle, respectively. The difference condition produced a virtual power output from 0-180° (V0°-180°). Recruitment was assessed by integrating EMG over the pedal cycle (IEMG) and as the (post-pre) exercise T(2) change (ΔT(2)). For E0°-230°, the mean IEMG for vastus medialis and lateralis (VM/VL; 49.3 ± 3.9 mV·s; mean ± SE) was greater (P < 0.05) than that for E90°-230° (17.9 ± 1.9 mV·s); the corresponding ΔT(2) values were 8.7 ± 1.0 and 1.4 ± 0.5 ms (P < 0.05). For E0°-230° and E90°-230°, the IEMG values for biceps femoris/long head (BF(L)) were 37.7 ± 5.4 and 27.1 ± 5.6 mV·s (P > 0.05); the corresponding ΔT(2) values were 0.9 ± 0.9 and 1.5 ± 0.9 ms (P > 0.05). MRI data indicated activation of the semitendinosus and BF/short head for E0°-230° and E90°-230°. For V0°-180°, ΔT(2) was 7.2 ± 0.9 ms for VM/VL and -0.6 ± 0.6 ms for BF(L); IEMG was 31.5 ± 3.7 mV·s for VM/VL and 10.6 ± 7.0 mV·s for BF(L). MRI and EMG data indicate VM/VL activity from 0 to 180° and selected hamstring activity from 90 to 230°. Combining ΔT(2) measurements with variable loading allows the spatial and temporal patterns of recruitment during cycling to be inferred from MRI data.  相似文献   

11.
ABSTRACT: Fargeas-Gluck, M-A and Léger, LA. Comparison of two aerobic field tests in young tennis players. J Strength Cond Res 26(11): 3036-3042, 2012-This study compares the maximal responses of a new aerobic tennis field test, the NAVTEN to a known aerobic field test, often used with young tennis players, that is, the continuous multistage 20-m shuttle run test (20-m SRT). The NAVTEN is an intermittent (1-minute/1-minute) multistage test with side-to-side displacements and ball hitting. Ten young elite tennis players aged 12.9 ± 0.3 (mean ± SD) randomly performed both tests and were continuously monitored for heart rate (HR) and oxygen uptake (V[Combining Dot Above]O2) using the Vmax ST (Sensormedics). The 20-m SRT and NAVTEN show similar HRpeak (202 ± 6.1 vs. 208 ± 9.5, respectively) and V[Combining Dot Above]O2peak (54.2 ± 5.9 vs. 54.9 ± 6.0 ml·kg·min). Pearson correlations between both tests were 0.88 and 0.92 for V[Combining Dot Above]O2peak and maximal speed, respectively. The NAVTEN yielded V[Combining Dot Above]O2peak values that are typical for active subjects of that age and are similar to the 20-m SRT supporting its use to measure aerobic fitness of young tennis players in specific and entertaining field conditions. The fact that two-thirds of the tennis players achieved a different ranking (±1 rank) with the NAVTEN and the 20-m SRT suggests that the NAVTEN may be more specific than the 20-m SRT to assess aerobic fitness of tennis players. From a practical point of view, the NAVTEN test is more specific and pedagogical for young tennis players even though both tests yield similar maximal values.  相似文献   

12.
This study compared the activation pattern and the fatigue rate among the superficial muscles of the quadriceps femoris (QF) during severe cycling exercise. Peak oxygen consumption (VO(2)peak) and maximal accumulated oxygen Deficit (MAOD) were established by 10 well-trained male cyclists (27.5 ± 4.1 years, 71.0 ± 10.3 kg, 173.4 ± 6.6 cm, mean VO(2)peak 56.7 ± 4.4 ml·kg·min(-1), mean MAOD 5.7 ± 1.1 L). Muscle activity (electromyographic [EMG] signals) was obtained during the supramaximal constant workload test (MAOD) and expressed by root mean square (RMS) and median frequency (MF slope). The RMS of the QF, vastus lateralis (VL) and vastus medialis (VM) muscles were significantly higher than at the beginning after 75% of exercise duration, whereas for the rectus femoris (RF), this was observed after 50% of exercise duration (p ≤ 0.05). The slope of the MF was significantly higher in the RF, followed by the VL and VM (-3.13 ± 0.52 vs. -2.61 ± 0.62 vs. -1.81 ±0.56, respectively; p < 0.05). We conclude that RF may play an important role in limiting performance during severe cycling exercise.  相似文献   

13.
While several studies have examined kinematic and kinetic differences between maximalist (MAX), traditional (TRAD), or partial minimalist (PMIN) shoes, to date it is unknown how MAX shoes influence muscle activity. This study compared lower extremity kinematics and muscle activity when running in PMIN, TRAD, and MAX shoes. Thirteen participants ran in each shoe while whole body kinematics were recorded using motion capture and electromyography was recorded from seven leg muscles. Differences in kinematics and root mean square amplitudes (RMS) were compared between shoe conditions. There were small differences in sagittal and frontal plane ankle kinematics between shoe conditions, with the MAX shoes resulting in less dorsiflexion at foot strike (p = .002) and less peak dorsiflexion (p < .001), and the PMIN shoes resulting in greater peak eversion (p = .012). Gluteus medius (p.006) and peroneus longus (p = .007) RMS amplitudes were greater in the MAX shoe then the TRAD or PMIN shoes while tibialis anterior RMS amplitudes were higher in the PMIN shoes (p = .005) than either the TRAD or MAX shoes. Consistent with previous findings, these results suggest there are small differences in kinematics when running in these three shoe types. This may partly be explained by the changes in muscle activity, which may be a response in order to maintain a preferred or habitual movement path. Implications for these difference in muscle activity in terms of fatigue or injury remain to be determined.  相似文献   

14.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

15.
This study was to investigate the acute effects of wearing shoes on lower limb kinetics, kinematics and muscle activation during a drop jump. Eighteen healthy men performed a drop jump under barefoot and shod conditions. Vertical ground reaction force (GRF) was measured on a force plate during the contact phase of a drop jump, and GRF valuables were calculated for each condition. The angles of the knee and ankle joints, and the foot strike angle (the angle between the plantar surface of the foot and the ground during ground contact) as well as the electromyography of 7 muscles were measured. The shod condition showed a significant larger first peak GRF, longer time to first peak GRF from the initial ground contact and lower initial loading rate than the barefoot condition. The shod condition showed a significant larger ankle joint angle at initial ground contact, smaller knee joint angle between the second peak GRF and take-off as well as smaller foot strike angle at both initial ground contact and take-off than the barefoot condition. There were significant correlations between relative differences in ankle joint at the initial ground contact and relative differences in the initial loading rate. The muscle activity of all muscles during foot ground contact did not differ between two conditions; however, in the shod condition, muscle activation of 150 ms before foot ground contact was significantly higher in the rectus femoris, whereas it was lower in the biceps femoris and tibialis anterior muscles than the barefoot condition. These results indicate that wearing shoes alternates the GRF variables at initial ground contact, joint kinematics at the ground contact and muscle activation before foot ground contact during a drop jump, suggesting that the effects of wearing shoes on drop jump training differ from being barefoot.  相似文献   

16.
Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O?max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O?max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O?max, fat-free mass, and fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O?max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O?max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.  相似文献   

17.
ABSTRACT: Glaister, M, Pattison, JR, Dancy, B, and McInnes, G. Perceptual and physiological responses to recovery from a maximal 30-second sprint. J Strength Cond Res 26(10): 2850-2857, 2012-The aims of this study were to evaluate perceptions of postexercise recovery and to compare patterns of perceived recovery with those of several potential mediating physiological variables. Seventeen well-trained men (age: 22 ± 4 years; height: 1.83 ± 0.05 m; body mass: 78.9 ± 7.6 kg; and body fat: 11.1 ± 2.2%) completed 10 sprint trials on an electromagnetically braked cycle ergometer. Trial 1 evaluated peak power via a 5-second sprint. The remaining trials evaluated (a) the recovery of peak power after a maximal 30-second sprint using rest intervals of 5, 10, 20, 40, 80, and 160 seconds; (b) perceived recovery via visual analog scales; and (c) physiological responses during recovery. The time point in recovery at which individuals perceived they had fully recovered was 163.3 ± 57.5 seconds. Power output at that same time point was 83.6 ± 5.2% of peak power. There were no significant differences between perceived recovery and the recovery processes of V[Combining Dot Above]O2 or minute ventilation (VE). Despite differences in the time courses of perceived recovery and the recovery of power output, individuals were able to closely predict full recovery without the need for external timepieces. Moreover, the time course of perceived recovery is similar to that of V[Combining Dot Above]O2 and VE.  相似文献   

18.
Surface electromyography has been useful in comparing muscular activity among different sports movements and it is a valuable technique for evaluating muscle activation, co-ordination and fatigue. Since these important variables have not been investigated during the full game in soccer, the present study aimed to investigate the activity of major muscles of the lower extremity during a soccer-simulation fatiguing protocol. Ten amateur soccer players (age 21.40+/-3.13 years; height 1.77+/-0.06 m; mass 74.55+/-8.5 kg) were tested. The exercise protocol, performed on a programmable motorised treadmill, consisted of the different intensities observed during soccer match-play (walking, jogging, running, sprinting). Electromyographic activity was recorded from the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and gastrocnemius (GC) muscles before exercise, at half-time and immediately after the 90-min exercise protocol. The EMG data were analysed using custom-written software to compute the root mean square (RMS) value over ten gait cycles. With regard to RF, BF and TA, a significant main effect (P< 0.05) was found for condition (pre-game, half-time and post-game), speed (6, 12, 15 and 21 km h(-1)) (P<0.05) and interaction between condition and speed (P< 0.05). For GC, a significant effect was not found for condition or interaction between condition and speed, but a significant main effect (P< 0.001) was found for speed, with the RMS value increasing continually with increasing speed from 6 to 2 1km h(-1). The results indicated that after a simulation of the exercise intensity of soccer-play the EMG activity in major lower-limb muscles was less than before. This decrease indicated that prolonged intermittent exercise had an effect on muscle activity even when work-rate was sustained.  相似文献   

19.
Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km.week-1) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m.s-1) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m.s-1), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.  相似文献   

20.
Over-pronation has been cited as a key contributor to many types of running injuries. However, the roles of the extrinsic foot muscles during running have not been adequately identified. The purpose of this study was to examine the muscle functional (mf) MRI and EMG responses to perturbations of the foot by running in varus, neutral and valgus wedged shoes. Ten males ran at 3.6 m/s in specially constructed shoes for 5 min with T2-weighted mfMRI collected before and after each run. The change in T2 from before to after each run characterized the level of metabolic activity in each of muscle. Kinematic and EMG data were also collected while subjects ran on a treadmill. There were no T2 differences across the three shoe conditions. In contrast, there was significantly less EMG activity in the tibialis anterior and soleus while wearing the neutral shoe. Overall, the results did not support the theory that muscle activity would increase as the degree of eversion increased. It also appears that surface EMG was more sensitive to differences between conditions than mfMRI. However, this study illustrated that mfMRI may be a useful tool for quantifying muscle activity in cases where surface EMG is inadequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号