首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions.  相似文献   

2.
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.  相似文献   

3.
In animals, visual pigments are essential for photoreceptor function and survival. These G-protein-coupled receptors consist of a protein moiety (opsin) and a covalently bound 11-cis-retinylidene chromophore. The chromophore is derived from dietary carotenoids by oxidative cleavage and trans-to-cis isomerization of double bonds. In vertebrates, the necessary chemical transformations are catalyzed by two distinct but structurally related enzymes, the carotenoid oxygenase β-carotenoid-15,15′-monooxygenase and the retinoid isomerase RPE65 (retinal pigment epithelium protein of 65 kDa). Recently, we provided biochemical evidence that these reactions in insects are catalyzed by a single enzyme family member named NinaB. Here we show that in the fly pathway, carotenoids are mandatory precursors of the chromophore. After chromophore formation, the retinoid-binding protein Pinta acts downstream of NinaB and is required to supply photoreceptors with chromophore. Like ninaE encoding the opsin, ninaB expression is eye-dependent and is activated as a downstream target of the eyeless/pax6 and sine oculis master control genes for eye development. The requirement for coordinated synthesis of chromophore and opsin is evidenced by analysis of ninaE mutants. Retinal degeneration in opsin-deficient photoreceptors is caused by the chromophore and can be prevented by restricting its supply as seen in an opsin and chromophore-deficient double mutant. Thus, our study identifies NinaB as a key component for visual pigment production and provides evidence that chromophore in opsin-deficient photoreceptors can elicit retinal degeneration.  相似文献   

4.
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.  相似文献   

5.
One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light [1], cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors [2]. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling [3]. Indeed, biochemical [3], [4], [5], [6] and [7] and physiological [8] studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved.  相似文献   

6.
Visual pigment extracts prepared from rhabdomeric membranes of vitamin A deficient blowflies contain a 5-10 times lower concentration of rhodopsin than extracts from flies which were raised on a vitamin A rich diet. Spectrophotometry showed that digitonin-solubilized rhodopsin from blowfly photoreceptors R1-6 has an absorbance maximum at about 490 nm, but no unusually enhanced beta-band in the ultraviolet. The extracts did not contain detectable concentrations of other visual pigments nor was there any evidence for the presence of photostable vitamin A derivatives. Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the concentration of opsin in the rhabdomeric membrane is significantly reduced in vitamin A deficient flies compared to normal flies. The results indicate that the synthesis of opsin or its incorporation into the photoreceptor membrane is regulated by the chromophore concentration in the receptor cell. Furthermore, our findings open up the possibility that differences in the spectral absorption and excitability of photoreceptors from normal and vitamin A deficient flies result from the differing opsin content of the rhabdomeres.  相似文献   

7.
Wavelength regulation in iodopsin, a cone pigment.   总被引:3,自引:2,他引:1       下载免费PDF全文
The opsin shift, the difference in wavenumber between the absorption peak of a visual pigment and the protonated Schiff base of the chromophore, represents the influence of the opsin binding site on the chromophore. The opsin shift for the chicken cone pigment iodopsin is much larger than that for rhodopsin. To understand the origin of this opsin shift and the mechanism of wavelength regulation in iodopsin, a series of synthetic 9-cis and 11-cis dehydro- and dihydro-retinals was used to regenerate iodopsin-based pigments. The opsin shifts of these pigments are quite similar to those found in bacteriorhodopsin-based artificial pigments. On the basis of these studies, a tentative model of wavelength regulation in iodopsin is proposed.  相似文献   

8.
Sato K  Yamashita T  Ohuchi H  Shichida Y 《Biochemistry》2011,50(48):10484-10490
VA/VAL opsin is one of the four kinds of nonvisual opsins that are closely related to vertebrate visual pigments in the phylogenetic tree of opsins. Previous studies indicated that among these opsins, parapinopsin and pinopsin exhibit molecular properties similar to those of invertebrate bistable visual pigments and vertebrate visual pigments, respectively. Here we show that VA/VAL opsin exhibits molecular properties intermediate between those of parapinopsin and pinopsin. VAL opsin from Xenopus tropicalis was expressed in cultured cells, and the pigment with an absorption maximum at 501 nm was reconstituted by incubation with 11-cis-retinal. Light irradiation of this pigment caused cis-to-trans isomerization of the chromophore to form a state having an absorption maximum in the visible region. This state has the ability to activate Gi and Gt types of G proteins. Therefore, the active state of VAL opsin is a visible light-absorbing intermediate, which probably has a protonated retinylidene Schiff base as its chromophore, like the active state of parapinopsin. However, this state was apparently photoinsensitive and did not show reverse reaction to the original pigment, unlike the active state of parapinopsin, and instead similar to that of pinopsin. Furthermore, the Gi activation efficiency of VAL opsin was between those of pinopsin and parapinopsin. Thus, the molecular properties of VA/VAL opsin give insights into the mechanism of conversion of the molecular properties from invertebrate to vertebrate visual pigments.  相似文献   

9.
Visual pigment extracts prepared from rhabdomeric membranes of vitamin A deficient blowflies contain a 5–10 times lower concentration of rhodopsin than extracts from flies which were raised on a vitamin A rich diet. Spectrophotometry showed that digitonin-solubilized rhodopsin from blowfly photoreceptors R1–6 has an absorbance maximum at about 490 nm, but no unusually enhanced β-band in the ultraviolet. The extracts did not contain detectable concentrations of other visual pigments nor was there any evidence for the presence of photostable vitamin A derivatives.Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the concentration of opsin in the rhabdomeric membrane is significantly reduced in vitamin A deficient flies compared to normal flies. The results indicate that the synthesis of opsin or its incorporation into the photoreceptor membrane is regulated by the chromophore concentration in the receptor cell. Furthermore, our findings open up the possibility that differences in the spectral absorption and excitability of photoreceptors from normal and vitamin A deficient flies result from the differing opsin content of the rhabdomeres.  相似文献   

10.
Invertebrates such as Drosophila or Limulus assemble their visual pigment into the specialized rhabdomeric membranes of photoreceptors where phototransduction occurs. We have investigated the biosynthesis of rhodopsin from the Limulus lateral eye with three cell culture expression systems: mammalian COS1 cells, insect Sf9 cells, and amphibian Xenopus oocytes. We extracted and affinity-purified epitope-tagged Limulus rhodopsin expressed from a cDNA or cRNA from these systems. We found that all three culture systems could efficiently synthesize the opsin polypeptide in quantities comparable with that found for bovine opsin. However, none of the systems expressed a protein that stably bound 11-cis-retinal. The protein expressed in COS1 and Sf9 cells appeared to be misfolded, improperly localized, and proteolytically degraded. Similarly, Xenopus oocytes injected with Limulus opsin cRNA did not evoke light-sensitive currents after incubation with 11-cis-retinal. However, injecting Xenopus oocytes with mRNA from Limulus lateral eyes yielded light-dependent conductance changes after incubation with 11-cis-retinal. Also, expressing Limulus opsin cDNA in the R1-R6 photoreceptors of transgenic Drosophila yielded a visual pigment that bound retinal, had normal spectral properties, and coupled to the endogenous phototransduction cascade. These results indicate that Limulus opsin may require one or more photoreceptor-specific proteins for correct folding and/or chromophore binding. This may be a general property of invertebrate opsins and may underlie some of the functional differences between invertebrate and vertebrate visual pigments.  相似文献   

11.
The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors.  相似文献   

12.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2007,46(21):6437-6445
A visual pigment consists of an opsin protein and a chromophore, 11-cis-retinal, which binds to a specific lysine residue of opsin via a Schiff base linkage. The Schiff base chromophore is protonated in pigments that absorb visible light, whereas it is unprotonated in ultraviolet-absorbing visual pigments (UV pigments). To investigate whether an unprotonated Schiff base can undergo photoisomerization as efficiently as a protonated Schiff base in the opsin environment, we measured the quantum yields of the bovine rhodopsin E113Q mutant, in which the Schiff base is unprotonated at alkaline pH, and the mouse UV pigment (mouse UV). Photosensitivities of UV pigments were measured by irradiation of the pigments followed by chromophore extraction and HPLC analysis. Extinction coefficients were estimated by comparing the maximum absorbances of the original pigments and their acid-denatured states. The quantum yield of the bovine rhodopsin E113Q mutant at pH 8.2, where the Schiff base is unprotonated, was significantly lower than that of wild-type rhodopsin, whereas the mutant gave a quantum yield almost identical to that of the wild type at pH 5.5, where the Schiff base is protonated. These results suggest that Schiff base protonation plays a role in increasing quantum yield. The quantum yield of mouse UV, which has an unprotonated Schiff base chromophore, was significantly higher than that of the unprotonated form of the rhodopsin E113Q mutant, although it was still lower than the visible-absorbing pigments. These results suggest that the mouse UV pigment has a specific mechanism for the efficient photoisomerization of its unprotonated Schiff base chromophore.  相似文献   

13.
Vertebrate opsins in both photoreceptors and the retinal pigment epithelium (RPE) have fundamental roles in the visual process. The visual pigments in photoreceptors are bound to 11-cis-retinal and are responsible for the initiation of visual excitation. Retinochrome-like opsins in the RPE are bound to all-trans-retinal and play an important role in chromophore metabolism. The retinal G protein-coupled receptor (RGR) of the RPE and Müller cells is an abundant opsin that generates 11-cis-retinal by stereospecific photoisomerization of its bound all-trans-retinal chromophore. We have analyzed a 32-kDa protein (p32) that co-purifies with bovine RGR from RPE microsomes. The co-purified p32 was identified by mass spectrometric analysis as 11-cis-retinol dehydrogenase (cRDH), and enzymatic assays have confirmed the isolation of an active cRDH. The co-purified cRDH showed marked substrate preference to 11-cis-retinal and preferred NADH rather than NADPH as the cofactor in reduction reactions. cRDH did not react with endogenous all-trans-retinal bound to RGR but reacted specifically with 11-cis-retinal that was generated by photoisomerization after irradiation of RGR. The reduction of 11-cis-retinal to 11-cis-retinol by cRDH enhanced the net photoisomerization of all-trans-retinal bound to RGR. These results indicate that cRDH is involved in the processing of 11-cis-retinal after irradiation of RGR opsin and suggest that cRDH has a novel role in the visual cycle.  相似文献   

14.
How color visual pigments are tuned.   总被引:1,自引:0,他引:1  
The absorption maximum of the retinal chromophore in color visual pigments is tuned by interactions with the protein (opsin) to which it is bound. Recent advances in the expression of rhodopsin-like transmembrane receptors and in spectroscopic techniques have allowed us to measure resonance Raman vibrational spectra of the retinal chromophore in recombinant visual pigments to examine the molecular basis of this spectral tuning. The dominant physical mechanism responsible for the opsin shift in color vision is the interaction of dipolar amino acid residues with the ground- and excited-state charge distributions of the chromophore.  相似文献   

15.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   

16.
17.
Rod and cone visual pigments use 11-cis-retinal, a vitamin A derivative, as their chromophore. Light isomerizes 11-cis- into all-trans-retinal, triggering a conformational transition of the opsin molecule that initiates phototransduction. After bleaching all-trans-retinal leaves the opsin, and light sensitivity must be restored by regeneration of 11-cis-retinal. Under bright light conditions the retinal G protein-coupled receptor (RGR) was reported to support this regeneration by acting as a photoisomerase in a proposed photic visual cycle. We analyzed the contribution of RGR to rhodopsin regeneration under different light regimes and show that regeneration, during light exposure and in darkness, is slowed about 3-fold in Rgr(-/-) mice. These findings are not in line with the proposed function of RGR as a photoisomerase. Instead, RGR, independent of light, accelerates the conversion of retinyl esters to 11-cis-retinal by positively modulating isomerohydrolase activity, a key step in the "classical" visual cycle. Furthermore, we find that light accelerates rhodopsin regeneration, independent of RGR.  相似文献   

18.

Background  

Color vision plays a critical role in visual behavior. An animal's capacity for color vision rests on the presence of differentially sensitive cone photoreceptors. Spectral sensitivity is a measure of the visual responsiveness of these cones at different light wavelengths. Four classes of cone pigments have been identified in vertebrates, but in teleost fishes, opsin genes have undergone gene duplication events and thus can produce a larger number of spectrally distinct cone pigments. In this study, we examine the question of large-scale variation in color vision with respect to individual, sex and species that may result from differential expression of cone pigments. Cichlid fishes are an excellent model system for examining variation in spectral sensitivity because they have seven distinct cone opsin genes that are differentially expressed.  相似文献   

19.
Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.  相似文献   

20.
The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号