首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of a 38-day endurance exercise training program on leucine turnover and substrate metabolism during a 90-min exercise bout at 60% peak O(2) consumption (VO(2 peak)) in 6 males and 6 females. Subjects were studied at both the same absolute (ABS) and relative (REL) exercise intensities posttraining. Training resulted in a significant increase in whole body VO(2 peak) and skeletal muscle citrate synthase (CS; P < 0.001), complex I-III (P < 0.05), and total branched-chain 2-oxoacid dehydrogenase (BCOAD; P < 0.001) activities. Leucine oxidation increased during exercise for the pretraining trial (PRE, P < 0.001); however, there was no increase for either the ABS or REL posttraining trial. Leucine oxidation was significantly lower for females at all time points during rest and exercise (P < 0.01). The percentage of BCOAD in the activated state was significantly increased after exercise for both the PRE and REL exercise trials, with the increase in PRE being greater (P < 0.001) compared with REL (P < 0.05). Females oxidized proportionately more lipid and less carbohydrate during exercise compared with males. In conclusion, we found that 38 days of endurance exercise training significantly attenuated both leucine oxidation and BCOAD activation during 90 min of endurance exercise at 60% VO(2 peak) for both ABS and REL exercise intensities. Furthermore, females oxidize proportionately more lipid and less carbohydrate compared with males during endurance exercise.  相似文献   

2.

Background

High dose of corticosteroids has been previously shown to protect against controlled mechanical ventilation (CMV)-induced diaphragmatic dysfunction while inhibiting calpain activation. Because literature suggests that the calpain inhibiting effect of corticosteroid depends on the dose administered, we determined whether lower doses of corticosteroids would also provide protection of the diaphragm during CMV. This may be important for patients undergoing mechanical ventilation and receiving corticosteroids.

Methods

Rats were assigned to controls or to 24 hours of CMV while being treated at the start of mechanical ventilation with a single intramuscular administration of either saline, or 5 mg/kg (low MP) or 30 mg/kg (high MP) of methylprednisolone.

Results

Diaphragmatic force was decreased after CMV and this was exacerbated in the low MP group while high MP rescued this diaphragmatic dysfunction. Atrophy was more severe in the low MP group than after CMV while no atrophy was observed in the high MP group. A significant and similar increase in calpain activity was observed in both the low MP and CMV groups whereas the high dose prevented calpain activation. Expression of calpastatin, the endogenous inhibitor of calpain, was decreased in the CMV and low MP groups but its level was preserved to controls in the high MP group. Caspase-3 activity increased in all CMV groups but to a lesser extent in the low and high MP groups. The 20S proteasome activity was increased in CMV only.

Conclusions

Administration of 30 mg/kg methylprednisolone during CMV protected against CMV-induced diaphragm dysfunction while 5 mg/kg was more deleterious. The protective effect is due mainly to an inhibition of the calpain system through preservation of calpastatin levels and to a lesser extent to a caspase-3 inhibition.  相似文献   

3.
We hypothesized that lung inflammation and parenchymal apoptosis in ventilator-induced lung injury (VILI) are related to ANG II and assessed the ability of the angiotensin-converting enzyme inhibitor captopril to attenuate VILI in rats. Adult male Sprague-Dawley rats were randomized to receive two ventilation strategies for 2 h: 1) tidal volume of 40 ml/kg, respiratory rate of 25 breaths/min, and inspiratory O2 fraction of 0.21 [high-volume, 0 positive end-expiratory pressure (HVZP) group] and 2) injection of captopril (100 mg/kg ip) 30 min before HVZP ventilation (HVZP+CAP group). Another group, which did not receive ventilation, served as the control. Mean arterial pressure was significantly lower in the HVZP+CAP group than in the HVZP group at 2 h of ventilation. Total protein levels were significantly higher in bronchoalveolar lavage fluid (BALF) recovered from HVZP-ventilated rats than from controls. BALF macrophage inflammatory protein-2 and lung ANG II were significantly higher in the HVZP group than in the control and HVZP+CAP groups. Lung ANG II levels correlated positively with BALF protein and macrophage inflammatory protein-2. The number of apoptotic airway and alveolar wall cells was significantly higher in the HVZP and HVZP+CAP groups than in the control group and significantly lower in the HVZP+CAP group than in the HVZP group. These results suggest that the efficiency of captopril to attenuate VILI is related to reduction of inflammatory cytokines and inhibition of apoptosis and indicate that VILI is partly mediated by the local angiotensin system.  相似文献   

4.
Mechanical ventilation can cause direct injury to the lungs, a type of injury known as ventilator-induced lung injury (VILI). VILI is associated with up-regulates angiotensinogen and AT1 receptor expression of in the lung. This work explored effects of losartan on VILI in diabetic mice. Ninty-six C57Bl/6 mice were randomly divided into six groups, control group (C group), diabetes group (D group), diabetes mechanical ventilation group (DV group), losartan control group (L + C group), losartan treatment group in diabetic mice (L + D group) and losartan treatment group in mechanical ventilation diabetic mice (L + DV group). Lung W/D, myeloperoxidase (MPO) activity, microvascular permeability, blood–gas analysis, Ang II concentrations and AT-1R protein expression were measured. Compared with D group, DV group increased Ang II concentrations, AT-1R protein expression, W/D ratio, MPO activity, and microvascular permeability. PaO2 were significantly lower in the DV group than D group or control group. Compared with DV group, L + DV group attenuates ventilator-induced lung injury in diabetic mice and prevented the increase Ang II concentrations, AT-1R protein expression and microvascular permeability caused by ventilation in diabetic mice. This study provides in vivo evidence that losartan attenuates microvascular permeability via down-regulates Ang II and AT-1R expression in mechanical ventilator-induced lung injury in diabetic mice.  相似文献   

5.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

6.
In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were ventilated with high tidal volume (HV(T)) for 10 min to 4 h. Alveolar macrophage counts in bronchoalveolar lavage (BAL) fluid decreased 45% by 20 min of HV(T) (P < 0.05) consistent with activation-associated adhesion. Depletion of alveolar macrophages in vivo with liposomal clodronate significantly decreased permeability and pulmonary edema following 4 h of HV(T) (P < 0.05). BAL fluid from rats exposed to 20 min of HV(T) increased nitric oxide synthase activity nearly threefold in na?ve primary alveolar macrophages (P < 0.05) indicating that soluble factors present in the air spaces contribute to macrophage activation in VILI. Media from cocultures of alveolar epithelial cell monolayers and alveolar macrophages exposed to 30 min of stretch in vitro also significantly increased nitrite production in na?ve macrophages (P < 0.05), but media from stretched alveolar epithelial cells or primary alveolar macrophages alone did not, suggesting alveolar epithelial cell-macrophage interaction was required for the subsequent macrophage activation observed. These data demonstrate that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolar macrophages play an important role in the initial pathogenesis of VILI.  相似文献   

7.
Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Homocysteine is an independent risk factor for atherosclerotic vascular disease. It impairs endothelial function via increasing superoxide production and quenching nitric oxide (NO) release. Tetrahydrobiopterin (BH4) is a critical cofactor that couples nitric oxide synthase and facilitates the production of nitric oxide (vs. superoxide anions). In the first study, the effects of hyperhomocysteinemia (0.1 mM, 3 h) on endothelium-dependent vasorelaxation to ACh and A23187 were examined in isolated segments of rat aortae in the presence or absence of BH4 (0.1 mM). In the second study, the effects of hyperhomocysteinemia (24 h) on nitric oxide production and superoxide release (using lucigenin chemiluminescence) were studied in human umbilical vein endothelial cells in the absence or presence of BH4 (10 M). Homocysteine incubation impaired receptor-dependent and -independent endothelial function to ACh and A23187. This effect was attenuated by BH4. Furthermore, homocysteine exposure increased superoxide production and impaired agonist-stimulated nitric oxide release. These effects were attenuated by BH4 (p < 0.05). Hyperhomocysteinemia impairs endothelial function, in part due to a diminished bioavailability of BH4 with resultant uncoupling of nitric oxide synthase. BH4 may represent an important target for strategies aimed at improving endothelial dysfunction secondary to hyperhomocysteinemia.  相似文献   

8.
9.
Gallstones form when the ratio of bile cholesterol to bile acids and phospholipids is elevated, causing cholesterol to precipitate. Physical inactivity is hypothesized to increase gallstone development, but experimental evidence supporting this is lacking, and potential mechanisms for the antilithogenic effects of exercise have not been described. The purpose of this study was to examine the effect of endurance exercise training on gallstone formation and the expression of genes involved in bile cholesterol metabolism in gallstone-sensitive (C57L/J) mice. At 10 wk, 50 male mice began a lithogenic diet and were randomly assigned to an exercise-training (EX) or sedentary (SED) group (n = 25 per group). Mice in the EX group ran on a treadmill at approximately 15 m/min for 45 min/day for 12 wk. At the time animals were euthanized, gallstones were collected, pooled by group, and weighed. The weight of the gallstones was 2.5-fold greater in the SED mice compared with EX mice (143 vs. 57 mg, respectively). In the EX mice, hepatic expression of the low-density lipoprotein receptor (LDLr), scavenger receptor class B type 1 (SRB1), and sterol 27 hydroxylase (Cyp27) was increased by approximately 2-fold (P < 0.05 for each). The LDLr and SRB1 increase cholesterol clearance by low-density lipoprotein and high-density lipoprotein particles, respectively, while Cyp27 promotes the catabolism of cholesterol to bile acids. Taken together, these data indicate that exercise promotes changes in hepatic gene expression that increase cholesterol uptake by the liver but simultaneously increase the catabolism of cholesterol to bile acids, effectively reducing cholesterol saturation in the bile. This suggests a mechanism by which exercise improves cholesterol clearance from the circulation while simultaneously inhibiting gallstone formation.  相似文献   

10.
11.
The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and alpha-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 microg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.  相似文献   

12.
13.
14.
Plasma albumin is well known to decrease in response to inflammation. The rate of albumin synthesis from both liver and plasma was measured in vivo by use of a large dose of L-[(2)H(3)-(14)C]valine in rats injected intravenously with live Escherichia coli and in pair-fed control rats during the acute-phase period (2 days postinfection). The plasma albumin concentration was reduced by 50% in infected rats compared with pair-fed animals. Infection induced a fall in both liver albumin mRNA levels and albumin synthesis relative to total liver protein synthesis. However, absolute liver albumin synthesis rate (ASR) was not affected by infection. In plasma, albumin fractional synthesis rate was increased by 50% in infected animals compared with pair-fed animals. The albumin ASR estimated in the plasma was similar in the two groups. These results suggest that hypoalbuminemia is not due to reduced albumin synthesis during sepsis. Moreover, liver and plasma albumin ASR were similar. Therefore, albumin synthesis measured in the plasma is a good indicator of liver albumin synthesis.  相似文献   

15.
Oxidants may play a role in hypoxia-induced respiratory muscle dysfunction. In the present study we hypothesized that hypoxia-induced impairment in diaphragm contractility is associated with elevated peroxynitrite generation. In addition, we hypothesized that strenuous contractility of the diaphragm increases peroxynitrite formation. In vitro force-frequency relationship, isotonic fatigability, and nitrotyrosine levels were assessed under hypoxic (Po(2) approximately 6.5 kPa) and hyperoxic (Po(2) approximately 88.2 kPa) control conditions and also in the presence of authentic peroxynitrite (60 min), ebselen (60 min), and the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate (L-NMMA) (90 min). A hypoxia-induced downward shift of the force-frequency relationship was associated with elevated nitrotyrosine level in the diaphragm. During hypoxia, both ebselen and L-NMMA decreased nitrotyrosine levels but did not affect force generation. Strenuous contractions impaired force generation but did not affect nitrotyrosine levels in the diaphragm during hypoxia. But under hyperoxic conditions, fatiguing contractions were associated with elevated diaphragm nitrotyrosine levels. Under hyperoxic conditions exogenous peroxynitrite impaired force generation and increased nitrotyrosine level. These studies show that hypoxia-induced impairment in diaphragm contractility is associated with increased diaphragm protein nitration, but no causal relationship was found between diaphragm nitrotyrosine formation and in vitro force generation.  相似文献   

16.
Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) have been implicated in cardiac dysfunction during endotoxemia. Because IL-18 is a proinflammatory cytokine known to mediate the production of TNF-alpha and IL-1beta and to induce the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), we hypothesized that neutralization of IL-18 would attenuate lipopolysaccharide (LPS)-induced cardiac dysfunction. Mice (C57BL/6) were injected with LPS (0.5 mg/kg ip) or vehicle (normal saline), and left ventricular developed pressure (LVDP) was determined by the Langendorff technique. LVDP was depressed by 38% at 6 h after LPS. LPS-induced myocardial dysfunction was associated with increased myocardial levels of TNF-alpha and IL-1beta as well as increased expression of ICAM-1/VCAM-1. Pretreatment with neutralizing anti-mouse IL-18 antibody attenuated LPS-induced myocardial dysfunction (by 92%) and was associated with reduced myocardial IL-1beta production (65% reduction) and ICAM-1/VCAM-1 expression (50% and 35% reduction, respectively). However, myocardial TNF-alpha levels were not influenced by neutralization of IL-18. In conclusion, neutralization of IL-18 protects against LPS-induced myocardial dysfunction. IL-18 may mediate endotoxemic myocardial dysfunction through induction of and/or synergy with IL-1beta, ICAM-1, and VCAM-1.  相似文献   

17.
Hepatocyte growth factor (HGF) acts as an organotropic factor for regeneration and protection in various organs and has the ability to attenuate cerebral ischemia-induced cell death. However, the effect of HGF on learning and memory function after a cerebral ischemic event is unknown. We demonstrate here that administration of human recombinant HGF (hrHGF) into the ventricle reduced the prolongation of the escape latency in the acquisition and retention tests in the water maze task on days 12-28 after microsphere embolism-induced cerebral ischemia. In addition, disruption of the blood-brain barrier at the early stage after microsphere embolism, which was determined by FITC-albumin leakage, was markedly reduced by treatment with hrHGF. We demonstrated that this effect of hrHGF on the blood-brain barrier was associated with protection against the apoptotic death of the cerebral endothelial cells at the early stage after the ischemia. These results suggest that hrHGF can prevent the learning and memory dysfunction soon after sustained cerebral ischemia by protecting against injury to the endothelial cells. The use of HGF may be a potent strategy for the treatment of cerebrovascular diseases, including cerebral infarct and vascular dementia.  相似文献   

18.
The mechanisms by which infections induce diaphragm dysfunction remain poorly understood. The purpose of this study was to determine which caspase pathways (i.e., the extrinsic, death receptor-linked caspase-8 pathway, and/or the intrinsic, mitochondrial-related caspase-9 pathway) are responsible for endotoxin-induced diaphragm contractile dysfunction. We determined 1) whether endotoxin administration (12 mg/kg IP) to mice induces caspase-8 or -9 activation in the diaphragm; 2) whether administration of a caspase-8 inhibitor (N-acetyl-Ile-Glu-Thr-Asp-CHO, 3 mg/kg iv) or a caspase-9 inhibitor (N-acetyl-Leu-Glu-His-Asp-CHO, 3 mg/kg iv) blocks endotoxin-induced diaphragmatic weakness and caspase-3 activation; 3) whether TNF receptor 1-deficient mice have reduced caspase activation and diaphragm dysfunction following endotoxin; and 4) whether cytokines (TNF-alpha or cytomix, a mixture of TNF-alpha, interleukin-1beta, interferon-gamma, and endotoxin) evoke caspase activation in C(2)C(12) myotubes. Endotoxin markedly reduced diaphragm force generation (P < 0.001) and induced increases in caspase-3 and caspase-8 activity (P < 0.03), but failed to increase caspase-9. Inhibitors of caspase-8, but not of caspase-9, prevented endotoxin-induced reductions in diaphragm force and caspase-3 activation (P < 0.01). Mice deficient in TNF receptor 1 also had reduced caspase-8 activation (P < 0.001) and less contractile dysfunction (P < 0.01) after endotoxin. Furthermore, incubation of C(2)C(12) cells with either TNF-alpha or cytomix elicited significant caspase-8 activation. The caspase-8 pathway is strongly activated in the diaphragm following endotoxin and is responsible for caspase-3 activation and diaphragm weakness.  相似文献   

19.
Diabetic cardiomyopathy is characterized by impaired ventricular contraction and altered function of insulin-like growth factor I (IGF-I), a key factor for cardiac growth and function. Endogenous IGF-I has been shown to alleviate diabetic cardiomyopathy. This study was designed to evaluate exogenous IGF-I treatment on the development of diabetic cardiomyopathy. Adult rats were divided into four groups: control, control + IGF-I, diabetic, and diabetic + IGF-I. Streptozotocin (STZ; 55 mg/kg) was used to induce experimental diabetes immediately followed by a 7-wk IGF-I (3 mg. kg(-1). day(-1) ip) treatment. Mechanical properties were assessed in ventricular myocytes including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)) and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) transients were evaluated as Ca(2+)-induced Ca(2+) release and Ca(2+) clearing constant. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and glucose transporter (GLUT4) were assessed by Western blot. STZ caused significant weight loss and elevated blood glucose, demonstrating the diabetic status. The diabetic state is associated with reduced serum IGF-I levels, which were restored by IGF-I treatment. Diabetic myocytes showed reduced PS and +/-dL/dt as well as prolonged TPS, TR(90), and intracellular Ca(2+) clearing compared with control. IGF-I treatment prevented the diabetes-induced abnormalities in PS, +/-dL/dt, TR(90), and Ca(2+) clearing but not TPS. The levels of SERCA and GLUT4, but not PLB, were significantly reduced in diabetic hearts compared with controls. IGF-I treatment restored the diabetes-induced decline in SERCA, whereas it had no effect on GLUT4 and PLB levels. These results suggest that exogenous IGF-I treatment may ameliorate contractile disturbances in cardiomyocytes from diabetic animals and could provide therapeutic potential in the treatment of diabetic cardiomyopathy.  相似文献   

20.
Regular exercise during pregnancy can prevent offspring from several diseases, such as cardiovascular diseases, obesity, and type II diabetes during adulthood. However, little information is available about whether maternal exercises during pregnancy protect the offspring from infectious diseases, such as sepsis and multiple organ dysfunction syndrome (MODS). This study aimed to investigate whether maternal exercise training protects the offspring from endotoxin-induced septic shock in mice. Female C57BL/6 mice performed voluntary wheel exercises during pregnancy. All dams and offspring were fed normal chow with sedentary activity during lactation and after weaning. At 10-week-old, mice were intraperitoneally injected a lethal (30 mg/kg) or nonlethal (15 mg/kg) dose of lipopolysaccharide (LPS), following which the survival of mice that were administered a lethal dose was monitored for 60 h. Plasma, lung, and liver samples were collected 18 h after the injection to evaluate the cytokine concentration or mRNA expression from those administered a nonlethal dose. Although maternal exercise training could not prevent lethality during an LPS-induced septic shock, it significantly inhibited the LPS-induced loss of body weight in female offspring. Regular maternal exercise significantly inhibited the mRNA expression of the LPS-induced inflammatory cytokines, such as interleukin-1β (IL-1β) and interferon-γ (IFN-γ), in the plasma and liver. Thus, maternal exercise inhibited the LPS-induced inflammatory response in female offspring, suggesting that regular exercise during pregnancy could be a potential candidate of the onset of sepsis and MODS in offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号