首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shakir MA  Gill JS  Lundquist EA 《Genetics》2006,172(2):893-913
Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration.  相似文献   

2.
Cell migration is a fundamental process in animal development, including development of the nervous system. In C. elegans, the bilateral QR and QL neuroblasts undergo initial anterior and posterior polarizations and migrations before they divide to produce neurons. A subsequent Wnt signal from the posterior instructs QL descendants to continue their posterior migration. Nck-interacting kinases (NIK kinases) have been implicated in cell and nuclear migration as well as lamellipodia formation. Studies here show that the C. elegans MIG-15 NIK kinase controls multiple aspects of initial Q cell polarization, including the ability of the cells to polarize, to maintain polarity, and to migrate. These data suggest that MIG-15 acts independently of the Wnt signal that controls QL descendant posterior migration. Furthermore, MIG-15 affects the later migrations of neurons generated from Q cell division. Finally, a mosaic analysis indicates that MIG-15 acts cell-autonomously in Q descendant migration.  相似文献   

3.
The bilateral C. elegans neuroblasts QL and QR are born in the same anterior/posterior (A/P) position, but polarize and migrate left/right asymmetrically: QL migrates toward the posterior and QR migrates toward the anterior. After their migrations, QL but not QR switches on the Hox gene mab-5. We find that the UNC-40/netrin receptor and a novel transmembrane protein DPY-19 are required to orient these cells correctly. In unc-40 or dpy-19 mutants, the Q cells polarize randomly; in fact, an individual Q cell polarizes in multiple directions over time. In addition, either cell can express MAB-5. Both UNC-40 and DPY-19, as well as the Trio/GTPase exchange factor homolog UNC-73, are required for full polarization and migration. Thus, these proteins appear to participate in a signaling system that orients and polarizes these migrating cells in a left/right asymmetrical fashion during development. The C. elegans netrin UNC-6, which guides many cells and axons along the dorsoventral axis, is not involved in Q cell polarization, suggesting that a different netrin-like ligand serves to polarize these cells along the anteroposterior axis.  相似文献   

4.
P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other species. Here we examine their roles in the postembryonic migration of the P cell neuroblasts and the axon guidance of the ventral cord commissural motoneurons (VCCMNs). We find that the two PAKs, max-2 and pak-1, are redundantly required for P cell migration and function with UNC-73/Trio and the rac GTPases (CED-10 and MIG-2). During axon guidance of the VCCMNs, PAK-1 also acts with the rac GTPases, CED-10 and MIG-2, and is completely redundant with MAX-2. Interestingly, we find that unlike MAX-2 activity during P cell migration, for motoneuron axon guidance max-2 is also required in parallel to this PAK-1 pathway, independent of rac GTPase signaling. Finally, we provide evidence that MAX-2 functions downstream of the UNC-6/netrin receptor UNC-5 during axon repulsion and is an integral part of its signaling.  相似文献   

5.
M Sym  N Robinson  C Kenyon 《Cell》1999,98(1):25-36
The C. elegans Q neuroblasts and their descendants migrate along the anteroposterior (A/P) body axis to positions that are not associated with any obvious landmarks. We find that a novel protein, MIG-13, is required to position these cells correctly. MIG-13 is a transmembrane protein whose expression is restricted to the anterior and central body regions by Hox gene activity. MIG-13 functions non-cell autonomously within these regions to promote migration toward the anterior: loss of mig-13 activity shifts the Q descendants toward the posterior, whereas increasing the level of MIG-13 shifts them anteriorly in a dose-dependent manner. Our findings suggest that MIG-13 is a component of a global A/P migration system, and that the level of MIG-13 determines where along the body axis these migrating cells stop.  相似文献   

6.
In C. elegans, a bilateral pair of neuroblasts, QL and QR, give rise to cells that migrate in opposite directions along the anteroposterior (A/P) body axis. QL and its descendants migrate posteriorly whereas QR and its descendants migrate anteriorly. We find that a Wnt family member, EGL-20, acts in a dose-dependent manner to specify these opposite migratory behaviors. High levels of EGL-20 promote posterior migration by activating a canonical Wnt signal transduction pathway, whereas low levels promote anterior migration by activating a separate, undefined pathway. We find that the two Q cells respond differently to EGL-20 because they have different response thresholds. Thus, in this system two distinct dose-dependent responses are specified not by graded levels of the Wnt signal, but instead by left-right asymmetrical differences in the cellular responsiveness to Wnt signaling.  相似文献   

7.
Metazoan cell movement has been studied extensively in vitro, but cell migration in living animals is much less well understood. In this report, we have studied the Caenorhabditis elegans Q neuroblast lineage during larval development, developing live animal imaging methods for following neuroblast migration with single cell resolution. We find that each of the Q descendants migrates at different speeds and for distinct distances. By quantitative green fluorescent protein imaging, we find that Q descendants that migrate faster and longer than their sisters up-regulate protein levels of MIG-2, a Rho family guanosine triphosphatase, and/or down-regulate INA-1, an integrin α subunit, during migration. We also show that Q neuroblasts bearing mutations in either MIG-2 or INA-1 migrate at reduced speeds. The migration defect of the mig-2 mutants, but not ina-1, appears to result from a lack of persistent polarization in the direction of cell migration. Thus, MIG-2 and INA-1 function distinctly to control Q neuroblast migration in living C. elegans.  相似文献   

8.
The transmembrane protein MIG-13 is a key regulator required for anterior migration of neural cells in Caenorhabditis elegans, but the signaling mechanisms involved remain unknown. Here, we isolated a suppressor mutation in the unc-71/adm-1 gene, which rescued the AVM neuron migration defect in mig-13 mutants. Genetic analyses revealed that UNC-71 at least partly acts downstream of MIG-13 and has an inhibitory effect on the anterior cell migration. The unc-71 mutation also rescued the anterior migration defect of AVM neuron in src-1 mutants. These findings suggest that MIG-13 controls anteroposterior cell migration by interacting with UNC-71 and SRC-1 in C. elegans.  相似文献   

9.
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.  相似文献   

10.
11.
Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of specific sorting receptors. MIG-14/Wls is a conserved transmembrane protein that binds Wnt and is required in Wnt-producing cells for Wnt secretion. Here, we demonstrate that in the absence of retromer function, MIG-14/Wls is degraded in lysosomes and becomes limiting for Wnt signaling. We show that retromer-dependent recycling of MIG-14/Wls is part of a trafficking pathway that retrieves MIG-14/Wls from the plasma membrane. We propose that MIG-14/Wls cycles between the Golgi and the plasma membrane to mediate Wnt secretion. Regulation of this transport pathway may enable Wnt-producing cells to control the range of Wnt signaling in the tissue.  相似文献   

12.
The migration of neuroblasts along the anteroposterior body axis of C. elegans is controlled by multiple Wnts that act partially redundantly to guide cells to their precisely defined final destinations. How positional information is specified by this system is, however, still largely unknown. Here, we used a novel fluorescent in situ hybridization methods to generate a quantitative spatiotemporal expression map of the C. elegans Wnt genes. We found that the five Wnt genes are expressed in a series of partially overlapping domains along the anteroposterior axis, with a predominant expression in the posterior half of the body. Furthermore, we show that a secreted Frizzled-related protein is expressed at the anterior end of the body axis, where it inhibits Wnt signaling to control neuroblast migration. Our findings reveal that a system of regionalized Wnt gene expression and anterior Wnt inhibition guides the highly stereotypic migration of neuroblasts in C. elegans. Opposing expression of Wnts and Wnt inhibitors has been observed in basal metazoans and in the vertebrate neurectoderm. Our results in C. elegans support the notion that a system of posterior Wnt signaling and anterior Wnt inhibition is an evolutionarily conserved principle of primary body axis specification.  相似文献   

13.
Axon migrations are guided by extracellular cues that induce asymmetric outgrowth activity in the growth cone. Several intracellular signaling proteins have been implicated in the guidance response. However, how these proteins interact to generate asymmetric outgrowth activity is unknown. Here, we present evidence that in C. elegans, the CED-10/Rac1 GTPase binds to and causes asymmetric localization of MIG-10/lamellipodin, a protein that regulates actin polymerization and has outgrowth-promoting activity in neurons. Genetic analysis indicates that mig-10 and ced-10 function together to orient axon outgrowth. The RAPH domain of MIG-10 binds to activated CED-10/Rac1, and ced-10 function is required for the asymmetric MIG-10 localization that occurs in response to the UNC-6/netrin guidance cue. We also show that asymmetric localization of MIG-10 in growth cones is associated with asymmetric concentrations of f-actin and microtubules. These results suggest that CED-10/Rac1 is asymmetrically activated in response to the UNC-6/netrin signal and thereby causes asymmetric recruitment of MIG-10/lamellipodin. We propose that the interaction between activated CED-10/Rac1 and MIG-10/lamellipodin triggers local cytoskeletal assembly and polarizes outgrowth activity in response to UNC-6/netrin.  相似文献   

14.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

15.
BACKGROUND: Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS: Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS: We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.  相似文献   

16.
Netrin is a chemotrophic factor known to regulate a number of neurodevelopmental processes, including cell migration, axon guidance, and synaptogenesis. Although the role of Netrin in synaptogenesis is conserved throughout evolution, the mechanisms by which it instructs synapse assembly are not understood. Here we identify a mechanism by which the Netrin receptor UNC-40/DCC instructs synaptic vesicle clustering in vivo. UNC-40 localized to presynaptic regions in response to Netrin. We show that UNC-40 interacted with CED-5/DOCK180 and instructed CED-5 presynaptic localization. CED-5 in turn signaled through CED-10/Rac1 and MIG-10/Lamellipodin to organize the actin cytoskeleton in presynaptic regions. Localization of this signaling pathway to presynaptic regions was necessary for synaptic vesicle clustering during synapse assembly but not for the subcellular localization of active zone proteins. Thus, vesicle clustering and localization of active zone proteins are instructed by separate pathways downstream of Netrin. Our data indicate that signaling modules known to organize the actin cytoskeleton during guidance can be co-opted to instruct synaptic vesicle clustering.  相似文献   

17.
How extracellular molecules influence the direction of axon guidance is poorly understood. The HSN axon of Caenorhabditis elegans is guided towards a ventral source of secreted UNC-6 (netrin). The axon’s outgrowth response to UNC-6 is mediated by the UNC-40 (DCC) receptor. We have proposed that in response to the UNC-6 molecule the direction of UNC-40-mediated axon outgrowth is stochastically determined. The direction of guidance is controlled by asymmetric cues, including the gradient of UNC-6, that regulate the probability that UNC-40-mediated axon outgrowth is directed on average, over time, in a specific direction. Here we provide genetic evidence that a specialized extracellular matrix, which lies ventral to the HSN cell body, regulates the probability that UNC-40-mediated axon outgrowth will be directed ventrally towards the matrix. We show that mutations that disrupt the function of proteins associated with this matrix, UNC-52 (perlecan), UNC-112 (kindlin), VAB-19 (Kank), and UNC-97 (PINCH), decrease the probability of UNC-40-mediated axon outgrowth in the ventral direction, while increasing the probability of outgrowth in the anterior and posterior directions. Other results suggest that INA-1 (α integrin) and MIG-15 (NIK kinase) signaling mediate the response in HSN. Although the AVM axon also migrates through this matrix, the mutations have little effect on the direction of AVM axon outgrowth, indicating that responses to the matrix are cell-specific. Together, these results suggest that an extracellular matrix can regulate the direction of UNC-6 guidance by increasing the probability that UNC-40-mediated axon outgrowth activity will be oriented in a specific direction.  相似文献   

18.
A network of connections is established as neural circuits form between neurons. To make these connections, neurons initiate asymmetric axon outgrowth in response to extracellular guidance cues. Within the specialized growth cones of migrating axons, F-actin and microtubules asymmetrically accumulate where an axon projects forward. Although many guidance cues, receptors and intracellular signaling components that are required for axon guidance have been identified, the means by which the asymmetry is established and maintained is unclear. Here, we discuss recent studies in invertebrate and vertebrate organisms that define a signaling module comprising UNC-6 (the Caenorhabditis elegans ortholog of netrin), UNC-40 (the C. elegans ortholog of DCC), PI3K, Rac and MIG-10 (the C. elegans ortholog of lamellipodin) and we consider how this module could establish polarized outgrowth in response to guidance cues.  相似文献   

19.
In Caenorhabditis elegans hermaphrodites, the U-shaped gonad arms are formed by directed migration of the gonadal distal tip cells (DTCs). The stereotyped pattern of DTC migration is carefully controlled by extracellular and cell surface molecules during larval development. Here we report that two proteins, SQV-5 (chondroitin synthase) and its cofactor MIG-22 (chondroitin polymerizing factor), are required for chondroitin biosynthesis and are essential for the dorsally guided migration of DTCs. We found that MIG-22 is expressed in migrating DTCs, hypodermal seam cells, developing vulva and oocytes. The expression of SQV-5 or MIG-22 in both DTCs and hypodermis rescued the DTC migration defects of the relevant mutants more efficiently than when they were expressed in either single tissue. Furthermore, the expression of SQV-5 by the mig-22 promoter significantly rescued sqv-5 mutants, implying that these two proteins act in the same tissues and that chondroitin proteoglycans produced in both of these tissues are required for DTC migration. The DTC migration defects caused by sqv-5 or mig-22 mutations were partially suppressed in the anterior and enhanced in the posterior DTCs in unc-6, unc-5 or unc-40 mutant backgrounds, suggesting that chondroitin proteoglycans play roles in the UNC-6/netrin-dependent guidance of DTCs.  相似文献   

20.
Wnt/β-catenin signaling controls multiple steps of neural crest development, ranging from neural crest induction, lineage decisions, to differentiation. In mice, conditional β-catenin inactivation in premigratory neural crest cells abolishes both sensory neuron and melanocyte formation. Intriguingly, the generation of melanocytes is also prevented by activation of β-catenin in the premigratory neural crest, which promotes sensory neurogenesis at the expense of other neural crest derivatives. This raises the question of how Wnt/β-catenin signaling regulates the formation of distinct lineages from the neural crest. Using various Cre lines to conditionally activate β-catenin in neural crest cells at different developmental stages, we show that neural crest cell fate decisions in vivo are subject to temporal control by Wnt/β-catenin. Unlike in premigratory neural crest, β-catenin activation in migratory neural crest cells promotes the formation of ectopic melanoblasts, while the production of most other lineages is suppressed. Ectopic melanoblasts emerge at sites of neural crest target structures and in many tissues usually devoid of neural crest-derived cells. β-catenin activation at later stages in glial progenitors or in melanoblasts does not lead to surplus melanoblasts, indicating a narrow time window of Wnt/β-catenin responsiveness during neural crest cell migration. Thus, neural crest cells appear to be multipotent in vivo both before and after emigration from the neural tube but adapt their response to extracellular signals in a temporally controlled manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号