首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant virus infections are known to alter host plant attractiveness and suitability for insect herbivores.This study was conducted to determine how cucumber mosaic virus (CMV)-infected chilli plants affect the fitness and settling preferences ofnonvector whitefly,Bemisia tabaci adults under dual-choice conditions with volatile organic compounds analyzed using solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS).Results showed that the presence of CIVIV in chilli plants substantially affects the settling preferences of the B.tabaci,which preferred to settle on noninfected plants.Duration of the egg stage and the longevity and fecundity of adult B.tabaci on CMV-infected chilli plants were not markedly different from those on noninfected chilli plants.In contrast,the developmental time from egg to adult was significantly reduced in CMV-infected chilli plants compared to the noninfected plants.The results also showed that CMV-infected chilli plants released significantly more linalool and phenylacetaldehyde than noninfected plants.Overall,it was suggested that the behavioral response of B.tabaci might be modified by CMV-infected plants,which alter the release of specific headspace volatiles.Based on these results,the modification of plant volatile profiles may help in enhancing the effectiveness of biological control and the protection of crop plants against B.tabaci.  相似文献   

2.
《Journal of Asia》2020,23(2):509-515
Bemisia tabaci species complex comprises at least 44 cryptic species worldwide. Here, we analyze the nucleotide sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene obtained from 76 samples of B. tabaci collected from 23 districts in Nepal. This is the first genetic and geographic study of B. tabaci species complex in Nepal. Our phylogenetic study identified the presence of three cryptic species—Asia I, Asia II 1, and Asia II 5—with high interspecific but low intraspecific variations. Among the three cryptic species, Asia II 5 was the most prevalent in Nepal, constituting 64.47% of all the sequenced samples. Based on haplotype network analysis of COI sequences, Asia II 1 was more genetically diversified than the other two cryptic species. Our results provided useful information on the genetic diversity and geographic distribution of B. tabaci in Nepal, which help monitor population changes of B. tabaci at cryptic species level and develop sustainable management strategies for its control.  相似文献   

3.
The whitefly Bemisia tabaci (Gennadius) is one of the most important pests causing economic losses in a variety of cropping systems around the world. This species was recently found in a coastal region of Colombia and has now spread inland. To investigate this invasive process, the genetic structure of B. tabaci was examined in 8 sampling locations from 2 infested regions (coastal, inland) using 9 microsatellite markers and the mitochondrial COI gene. The mitochondrial analysis indicated that only the invasive species of the B. tabaci complex Middle East–Asia Minor 1 (MEAM 1 known previously as biotype B) was present. The microsatellite data pointed to genetic differences among the regions and no isolation by distance within regions. The coastal region in the Caribbean appears to have been the initial point of invasion, while the inland region in the Southwest showed genetic variation among populations most likely reflecting founder events and ongoing changes associated with climatic and topographical heterogeneity. These findings have implications for tracking and managing B. tabaci.  相似文献   

4.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

5.
The whitefly Bemisia tabaci is a cryptic species complex of at least 24 genetically distinct species. Thus far, one obligate and seven facultative symbiotic bacteria have been reported from the B. tabaci species complex. Both genetic groups and infected symbionts are extremely important to estimate the pest status of B. tabaci. In this study, we collected 340 whiteflies from 39 agricultural sites, covering an entire region of the B. tabaci habitat in Japan, and examined the genotypes and symbiont community composition at subspecies level. Use of the cleaved amplified polymorphic sequence technique and mitochondrial cytochrome oxidase subunit I gene sequencing detected five genetic groups: indigenous species JpL and Asia II 6, invasive species Middle East‐Asia Minor 1 (MEAM1) and Mediterranean Subclade Q1 (MED Q1), and a genetic group previously undetected in Asia, Mediterranean Subclade Q2 (MED Q2). The genetic groups exhibited characteristic infection statuses with regard to their facultative symbionts, as observed in other countries. The endosymbiotic microbiota of the Japanese MED Q1 was different from that in neighbouring countries, but similar to that in the French or Uruguayan MED Q1. These results may indicate that Japanese MED Q1 species have not invaded from neighbouring countries, but from distant countries by international transportation. All Japanese MED Q2 species were infected with Rickettsia, some of which are regarded as conferring a female‐biased sex ratio and fitness benefit on B. tabaci. The results suggest that MED Q2 may be prevalent in Japan and neighbouring countries.  相似文献   

6.
Whiteflies (Hemiptera: Aleyrodidae) are major pests of many crops worldwide. Bemisia tabaci is a cryptic species complex composed of more than 39 putative species. Understanding which putative species of B. tabaci are predominant in an area is vital for effective pest management since they may vary considerably with respect to insecticide resistance, host plant range and virus transmission. Here, for the first time, the genetic diversity, the symbiont diversity and population structure of B. tabaci in Iraq were studied. Fourteen populations were analysed using mitochondrial cytochrome C oxidase subunit 1 (mtCO1) sequencing and microsatellite genotyping. Symbiotic bacteria were identified using 16S rRNA and 23S rRNA sequencing. MtCO1 sequencing detected two putative species of B. tabaci. The predominant putative species in Iraq was Middle East-Asia Minor (MEAM) 1 subcladeB2. In addition, one individual was MEAM1-subcladeB. The second putative species was a single individual of MEAM2. The microsatellite data indicated low genetic diversity, with no biologically informative clustering. All MEAM1 individuals harboured one primary symbiont, Portiera aleyrodidarum, and most (96%) have two secondary symbionts: Hamiltonella sp. and Rickettsia sp. This study has identified the genetic diversity and population structure of B. tabaci in Iraq. Further investigation is needed to update the pest status of B. tabaci in this region. The current data, combined with investigations into the capacity of the various putative species to transmit plant viruses, especially tomato yellow leaf curl virus, will aid pest management and horticultural production.  相似文献   

7.

Aim

The sweet potato whitefly, Bemisia tabaci MED is a globally invasive species that causes serious economic damage to agroecosystems. Despite the significant threat it poses to agricultural and economic crops worldwide, the global perspective of the invasion patterns and genetic mechanisms contributing to the success of this notorious pest is still poorly understood. The objective of this research was to enhance genome and population genetic analyses to better understand the intricate invasion patterns of B. tabaci MED.

Location

Samples were collected in native (Spain, Croatia, Bosnia and Herzegovina, Cyprus, and Israel) and invaded regions (China, South Korea and North America).

Methods

We first assembled a chromosome-scale reference genome of B. tabaci MED and then employed the restriction site-associated 2b-RAD method to genotype over 20,000 high-quality single-nucleotide polymorphisms from 29 geographical populations.

Results

A reference genome of B. tabaci MED, with a size of 637.47 Mb, was available. The majority of the assembled sequences (99%) were anchored onto 10 linkage groups, with an N50 size of 58.76 Mb, representing a significant improvement over previous whitefly genome assemblies. We identified rapidly expanded gene families and positively selected genes, probably contributing to successful invasion and rapid adaptation to the new environment. Population genomics analysis showed that three highly differentiated genetic groups were formed, and complex and extensive gene flow occurred across the Mediterranean populations. The genetic admixture patterns in East Asia populations were distinct from those in North America, indicating that they had different source populations.

Conclusions

The high-quality, chromosome-scale genome of B. tabaci MED offered opportunities for more comprehensive genome-wide studies and provided solid foundation to the complex introduction events and the differential invasiveness of B. tabaci MED worldwide.  相似文献   

8.

Background  

The degree to which loud-calls in nonhuman primates can be used as a reliable taxonomic tool is the subject of ongoing debate. A recent study on crested gibbons showed that these species can be well distinguished by their songs; even at the population level the authors found reliable differences. Although there are some further studies on geographic and phylogenetic differences in loud-calls of nonhuman primate species, it is unclear to what extent loud-calls of other species have a similar close relation between acoustic structure, phylogenetic relatedness and geographic distance. We therefore conducted a field survey in 19 locations on Sumatra, Java and the Mentawai islands to record male loud-calls of wild surilis (Presbytis), a genus of Asian leaf monkeys (Colobinae) with disputed taxanomy, and compared the structure of their loud-calls with a molecular genetic analysis.  相似文献   

9.
Narita S  Nomura M  Kato Y  Yata O  Kageyama D 《Genetica》2007,131(3):241-253
The common yellow butterfly Eurema hecabe is widely distributed in East Asia, and is one of the most burdensome species for taxonomists due to the numerous geographic and seasonal wing colour patterns. Moreover, within this species, individuals with a yellow wing fringe that occur in temperate regions of Japan (Y type) proved to be biologically different from others that occur widely in subtropical regions of Japan and all over East Asia (B type). To unveil the genetic variation within and between the two types, a total of 50 butterflies collected at 18 geographic localities in East Asia were examined for nucleotide sequence variation of three mitochondrial regions: cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit III (COIII) and NADH dehydrogenase subunit 5 (ND5). In addition, they were also examined for infection status with the endosymbiotic bacteria Wolbachia. The three mitochondrial sequences consistently showed that (i) Y type and B type were highly divergent, (ii) nucleotide variation within B type was very small although sampled from a geographically wide range, and (iii) a weak association existed between mitochondrial DNA haplotypes and Wolbachia infection status.  相似文献   

10.
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant‐mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.  相似文献   

11.
Eighteen populations of Bemisia tabaci, collected from different geographic locations (North & Central America, the Caribbean, Africa, the Middle East, Asia and Europe), were studied to identify and compare biological and genetic characteristics that can be used to differentiate biotypes. The morphology of the fourth instar/pupal stage and compound eye structures of adults were investigated using scanning electron microscopy and found to be typical of the species among all biotypes and populations studied. Setae and spines of B. tabaci larval scales from the same colony were highly variable depending on the host plant species or leaf surface characteristics. The location and the morphology of caudal setae, characteristic of all B. tabaci studied to date, were present in all colonies. However, differences in adult body lengths and in the ability to induce phy to toxic disorders in certain plant species were found between biotypes or populations. The recently identified “B” biotype, characterised by a diagnostic esterase banding pattern and by its ability to induce phytotoxic responses in squash, honeysuckle and nightshade was readily distinguished from non-“B” biotype populations. None of the non-“B” biotypes studied, were found to induce phytotoxic responses. Nine populations examined showed typical “B” biotype characteristics, regardless of country of origin. All tested populations, determined as “B” or “B”-like biotypes successfully mated with other “B” biotype colonies from different geographic areas. Non-“B” biotype colonies did not interbreed with other biotypes. The B. tabaci populations were tested for their ability to transmit 15 whitefly-transmitted geminiviruses (WTGs) from different geographic areas with a wide range of symptom types. All WTGs were transmitted by the “B” biotype colonies and by most non-“B” biotype colonies, with the exception of three viruses found in ornamental plants which were non-transmissible by any colony. Some non-“B” biotypes would not transmit certain geminiviruses and some geminiviruses were more efficiently transmitted than were others.  相似文献   

12.
Abstract The whitefly Bemisia tabaci has a global distribution and extensive genetic diversity. Recent phylogenetic analyses as well as crossing experiments suggest that B. tabaci is a complex composed of > 20 cryptic species, but more crossing studies are required to examine the reproductive compatibility among the putative species and thus further clarify the systematics of this species complex. We conducted crossing experiments and behavioral observations to investigate the reproductive compatibility between the Mediterranean, Asia II 3, and Asia II 1 putative species of B. tabaci collected from Zhejiang, China. Female progeny were never produced in inter-species crosses, demonstrating a lack of egg fertilization; while 55%–75% females were produced in all the intra-species treatments. Continuous behavioral observations showed that frequent courtship events occurred in both intra-species treatments and inter-putative species crosses. However, copulation events occurred only in the three intra-species treatments with one exception: that one copulation event occurred between Asia II 3 and Mediterranean in the crosses where two cohorts of females and males of different putative species were enclosed together in a small arena but were not allowed access to their intra-specific mates for a long period of time. These data demonstrated complete reproductive isolation between the Mediterranean, Asia II 3, and Asia II 1 putative species, and further showed that the isolation is due to lack of copulation. Demonstration of reproductive isolation between the Mediterranean and two indigenous putative species from China provides further evidence for the existence of cryptic species within the B. tabaci complex.  相似文献   

13.
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro‐environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II‐1, ‐5, and ‐7 mitotypes of the Asia II major clade. The whitefly–endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II‐1 and II‐7 mitotypes (r2 = .9, p < .005), while the Asia II‐5 microbiome was less complex. The microbiome OTU groups were mitotype‐specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype‐microbiome co‐adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%–0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II‐5 and ‐7, and one occurred exclusively in Asia II‐1, two only in Asia II‐5, and one in both Asia II‐1 and ‐7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II‐1 and ‐5, and a single Hemipteriphilus OTU occurred in Asia II‐1 and ‐7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.  相似文献   

14.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

15.
The sweet potato whitefly, Bemisia tabaci (Gennadius), is a cryptic species complex composed of at least 24 different morphologically indistinguishable species. The considerable differences in the pest status across the complex, and the ability of some to develop resistance to, insecticides make awareness of their identity critical in terms of developing effective control measures. Previously, phylogenetic reconstructions have been used to identify different B. tabaci, but this approach is no longer necessary because of the existence of mitochondrial cytochrome oxidase one consensus sequences for each of the known species. We therefore use these consensus sequences to determine the identities of the members of the complex in Syria and Egypt and then used genetic networks to reveal the pattern of their genetic relatedness to other haplotypes in the species to which they were assigned. The results showed the presence of three species in Syria, AsiaII 1, Middle East–Asia Minor 1 (this equates to the global invader known commonly as the B biotype) and Mediterranean (this equates to the global invader known commonly as the Q biotype). Egypt was shown to have two cryptic species, Middle East–Asia Minor 1 and Mediterranean. In Syria, Middle East–Asia Minor 1 was found around Damascus only (south‐west Syria), while Mediterranean was found throughout Aleppo (northern Syria) and Hama (north central Syria). AsiaII 1 was found around Hims (south central Syria) and Damascus (south‐western Syria). In Egypt, Mediterranean was found in Cairo and Ismailia (central Upper Egypt), while Middle East–Asia Minor 1 was found in the remaining all parts of Upper Egypt, Suez, North Sinai, Port Said, Dakahila, Behera and Alexandria which cover the main agricultural zone of Egypt. Genetic relatedness of Syrian and Egyptian populations with each other and with rest of world is also discussed.  相似文献   

16.
17.
The whitefly Bemisia tabaci is a species complex including at least 24 morphologically indistinguishable species among which the Mediterranean (Med) and Middle East-Asia Minor I (MEAMI) species containing the biotypes commonly known as Q and B, respectively. These B and Q biotypes (hereafter referred to as MEAMI and Med species) are the most invasive agricultural pests of the B. tabaci complex worldwide. The spread of MEAMI and more recently of Med species into regions already invaded by other B. tabaci populations has been frequently seen to lead to their displacement by Med species. In Tunisia, in contrast to usual observations in the Mediterranean basin, Med and MEAMI species have been seen to co-occur in the main crop producing regions. Based on fine population genetics and field spatial distribution analyses, we found that the co-existence of these two interacting species was based on habitat partitioning including spatial and host-plant partitioning. Although they co-occurred at larger spatial scales, they excluded one another at sample scale. We observed neither spatial overlapping nor hybridization between MEAMI and Med B. tabaci. Vegetable crops were the main hosts for MEAMI specimens while 99.1% of the B. tabaci collected on the ornamental, Lantana camara, were Med specimens. Different patterns of genetic diversity were observed between the two species, as well as among Med specimens sampled on the ornamental versus vegetables, with the highest genetic diversity found in Med B. tabaci sampled on L. camara. These findings lead us to focus our discussion on the role played by lantana, human pressure, and competition, in the spatial and genetic patterns observed in the whitefly B. tabaci.  相似文献   

18.
The pandemic of a severe form of cassava mosaic virus disease (CMVD) in East Africa is associated with abnormally high numbers of its whitefly vector, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). To determine whether a novel B. tabaci biotype was associated with the CMVD pandemic, reproductive compatibility, fecundity, nymphal development, and random amplified polymorphic DNA (RAPD) variability were examined in, and between, B. tabaci colonies collected from within the CMVD pandemic and non-pandemic zone in Uganda. In a series of reciprocal crosses carried out over two generations among the six CMVD pandemic and four non-pandemic zone cassava B. tabaci colonies, there was no evidence of mating incompatibility. All the crosses produced both female and male progeny in the F1 and F2 generations, which in a haplo-diploid species such as B. tabaci indicates successful mating. There also were no significant differences between the sex ratios for the pooled data of experimental crosses, between individuals from two different colonies and control crosses between individuals from the same colony. Only one instance of mating incompatibility occurred in a control cross between cassava B. tabaci from Uganda and cottonB. tabaci from India. Measures of fecundity of the pandemic and non-pandemic zone B. tabaci on four cassava varieties showed no significant differences in their fecundity, nymphal development or numbers surviving to adult eclosion. Cluster analysis of 26 RAPD bands using six 10-mer primers was concordant with the mating results, grouping the pandemic and non-pandemic zone colonies into a single large group, also including a B. tabaci colony collected from cassava in Tanzania. These results suggest that it is unlikely that the severe CMVD pandemic in East Africa is associated with a novel and reproductively isolated B. tabaci biotype.  相似文献   

19.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

20.
In this study, species complex of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations was determined by PCR‐based DNA analysis. According to phylogenetic analyses, the B. tabaci samples have been identified within three generic groups. A major part of the samples belonged to two invasive species, either Middle East–Asia Minor 1 (MEAM1) or Mediterranean (MED). In addition to these two invasive species, several samples collected from greenhouses and cotton fields have been found to be related to Middle East–Asia Minor 2 (MEAM2), which is the first record of Turkish B. tabaci species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号