首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
Integrins in mechanotransduction   总被引:12,自引:0,他引:12  
Mechanical forces are crucial to the regulation of cell and tissue morphology and function. At the cellular level, forces influence cytoskeletal organization, gene expression, proliferation, and survival. Integrin-mediated adhesions are intrinsically mechanosensitive and a large body of data implicates integrins in sensing mechanical forces. We review the relationship between integrins and mechanical forces, the role of integrins in cellular responses to stretch and fluid flow, and propose that some of these events are mechanistically related.  相似文献   

4.
5.
Metastasis is a combination of biological events that makes the difference between cancer and other diseases. Metastasis requires flow of erroneous but precisely coordinated basic cellular activities like cell migration–invasion, cell survival–apoptosis, cell proliferation, etc. All of these processes require efficient regulation of cell attachment and detachment, which recruit integrin receptors in this flow of events. World literatures show several aspects of interrelation of integrins and metastasis. Integrin molecules are being used as prime target to battle metastasis. In this review we are collating the observations showing importance of integrin biology in regulation of metastasis and the strategies where integrin receptors are being used as targets to regulate metastasis.  相似文献   

6.
7.
Integrins as mechanochemical transducers   总被引:43,自引:0,他引:43  
A recent resurgence of interest in mechanical forces and cell shape as biological regulators has revealed extracellular matrix as the site at which forces are transmitted both to and from cells. at the same time, great advances have been made in terms of defining cell-surface integrin receptors as transmembrane molecules that mediate cell attachment and physically interlink extracellular matrix with the intracellular cytoskeleton. Convergence of these two lines of research has begun to elucidate the molecular mechanism by which cells sense physical forces and transduce mechanical signals into a biochemical response.  相似文献   

8.
The Drosophila position-specific (PS) integrins are members of the integrin family of cell surface receptors and are thought to be receptors for extracellular matrix components. Each PS integrin consists of an α subunit, αPS1 or αPS2, and a βPS subunit. Mutations in the βPS subunit and the αPS2 subunit have been characterised and reveal that the PS integrins have an essential role in the adhesion of different cell layers to each other. The PS integrins are especially required for the function of the cell-matrix-cell junctions, where the muscles attach to the epidermis and where one surface of the developing wing adheres to the other. These junctions are similar to vertebrate focal adhesions and hemidesmosomes, which also contain integrins. Integrin-mediated cell to cell adhesion via the extracellular matrix provides a way for tissues to adhere to each other without intermingling of their cells.  相似文献   

9.
10.
整合素及其在胚泡植入中的作用   总被引:5,自引:0,他引:5  
整合素是一类由α、β亚基构成的异二聚体粘附分子,能够与胶原蛋白、纤连蛋白和玻连蛋白等细胞外基质组分相互作用,调节细胞粘附和通讯.作为双向传递分子,整合素通过“胞内→胞外”和“胞外→胞内”两种方式介导细胞信号传递.成功的植入是侵入性的胚泡和接受性的子宫内膜相互作用的结果,整合素能够调节胚泡滋养层与子宫内膜之间的细胞-细胞及细胞-细胞外基质相互作用,是“植入窗口”期子宫内膜接受性的标记分子.  相似文献   

11.
12.
Integrins in cell migration   总被引:1,自引:0,他引:1  
Integrin-based adhesion has served as a model for studying the central role of adhesion in migration. In this article, we outline modes of migration, both integrin-dependent and -independent in vitro and in vivo. We next discuss the roles of adhesion contacts as signaling centers and linkages between the ECM and actin that allows adhesions to serve as traction sites. This includes signaling complexes that regulate migration and the interplay among adhesion, signaling, and pliability of the substratum. Finally, we address mechanisms of adhesion assembly and disassembly and the role of adhesion in cellular polarity.  相似文献   

13.
Cell surface integrin receptors mediate cell adhesion, migration and cellular signaling in all nucleated cells. They are activated by binding to extracellular ligands or by intracellular proteins, such as kindlins that engage with their cytoplasmic tails. Cells in the periodontal tissues express several integrins with overlapping ligand-binding capabilities. A distinct phenotype in the periodontium has only been described for knockouts or mutations of three integrin subunits, α11, β6 and β2. Integrin α11β1 appears to have some regulatory function in the periodontal ligament of continuously erupting incisors in mice. Integrin αvβ6 is expressed in the junctional epithelium (JE) of the gingiva. Animals deficient in this receptor develop classical signs of periodontal disease, including inflammation, apical migration of the JE and bone loss, suggesting that it plays a role in the regulation of periodontal inflmmation, likely through activation of transforming growth factor-β1. Lack of integrin activation in the JE is also associated with periodontitis. Patients with kindlin-1 mutations have severe early-onset periodontal disease. Finally, patients with mutations in the leukocyte-specific β2 integrin subunit have severe periodontal problems due to lack of transiting neutrophils in the periodontal tissues.  相似文献   

14.
15.
Integrins are ubiquitously expressed major cell surface receptors for extracellular matrix. Integrin interaction with their extracellular ligands triggers activation of the intracellular signaling pathways that control cell shape, motility, proliferation, survival, cell-type-specific gene expression. In this review, we summarize recent studies analyzing contribution of integrins to the control of the mammary morphogenesis and differentiation, function and maintenance of mammary stem and progenitor cells and resume the data from mouse models revealing the contribution of the integrin-mediated signaling to mammary tumorigenesis.  相似文献   

16.
17.
Integrins and tumor invasion   总被引:12,自引:0,他引:12  
Cell-extracellular matrix interactions are important in the process of tumor cell invasion and metastasis. In particular, the interactions of tumor cells with basement membranes of tissue epithelial, as well as vascular endothelial, cells are likely to represent key steps in the metastatic process. The interactions between cells and the connective tissue matrix are mediated by a large family of cell surface receptors, the integrins, which represent multiple receptors for extracellular matrix and basement membrane components. Here, I review recent progress in elucidating the roles of integrins in tumor cell invasion. Altered expression of this large family of receptors on invasive tumor cells, as compared with non-invasive cells, may represent a fundamental step in the progressive expression of the invasive phenotype.  相似文献   

18.
Integrins are heterodimeric transmembrane glycoproteins involved in cell-cell and cell-extracellular matrix adhesion. They also participate in cytoskeletal rearrangements, co-regulation of growth factor activities and activation of signal transductions. This review describes experimental approaches that have given new insights into the integrin functions during embryogenesis. Using anti-functional antibodies, peptide inhibitors of integrin-ligand interactions and genetic ablation of integrins results, this review will show that integrins are key molecules during early development of both invertebrates and vertebrates.  相似文献   

19.
Integrins: Structure and Signaling   总被引:7,自引:0,他引:7  
Integrins are cell surface transmembrane glycoproteins that function as adhesion receptors in cell-extracellular matrix interactions and link the matrix proteins to the cytoskeleton. The family of human integrins comprises 24 members, each of which is a heterodimer consisting of 1 of 18 alpha- and 1 of 8 beta-subunits. Integrins play an important role in the cytoskeleton organization and in transduction of intracellular signals, regulating various processes such as proliferation, differentiation, apoptosis, and cell migration. This review summarizes current views on the structure of integrins, integrin associated proteins, and biochemical mechanisms underlying their signaling functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号