首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers.  相似文献   

2.
Several methods to synchronize cultured cells in the cell cycle are based on temporary inhibition of DNA replication. Previously it has been reported that cells synchronized this way exhibited significant growth imbalance and unscheduled expression of cyclins A and B1. We have now observed that HL-60 cells exposed to inhibitors of DNA replication (thymidine, aphidicolin and hydroxyurea), at concentrations commonly used to synchronize cell populations, had histone H2AX phosphorylated on Ser-139. This modification of H2AX, a marker of DNA damage (induction of DNA double-strand breaks; DSBs), was most pronounced in S-phase cells, and led to their apoptosis. Thus, to a large extent, synchronization was caused by selective kill of DNA replicating cells through induction of replication stress. In fact, similar synchronization has been achieved by exposure of cells to the DNA topoisomerase I inhibitor camptothecin, a cytotoxic drug known to target S-phase cells. A large proportion of the surviving cells 'synchronized' by DNA replication inhibitors at the G1/S boundary had phosphorylated histone H2AX. Inhibitors of DNA replication, thus, not only selectively kill DNA replicating cells, induce growth imbalance and alter the machinery regulating progression through the cycle, but they also cause DNA damage involving formation of DSBs in the surviving ('synchronized') cells. The above effects should be taken into account when interpreting data obtained with the use of cells synchronized by inhibitors of DNA replication.  相似文献   

3.
4.
DNA virus infection can elicit the DNA damage response in host cells, including ATM kinase activation and H2AX phosphorylation. This is considered to be the host cell response to replicating viral DNA. In contrast, we show that during infection of macrophages murine gamma-herpesvirus 68 (gammaHV68) actively induces H2AX phosphorylation by expressing a viral kinase (orf36). GammaHV68-encoded orf36 kinase and its EBV homolog, BGLF4, induce H2AX phosphorylation independently of other viral genes. The process requires the kinase domain of Orf36 and is enhanced by ATM. Orf36 is important for gammaHV68 replication in infected animals, and orf36, H2AX, and ATM are all critical for efficient gammaHV68 replication in primary macrophages. Thus, activation of proximal components of the DNA damage signaling response is an active viral kinase-driven strategy required for efficient gamma-herpesvirus replication.  相似文献   

5.
Histone H2AX is phosphorylated on Ser-139 by ATM kinase in response to damage that induces dsDNA breaks. Immunocytochemical detection of phosphorylated H2AX (gammaH2AX), thus, reveals the presence of dsDNA breaks in chromatin. Multiparameter cytometry was presently used to correlate the appearance of gammaH2AX with: a. cell cycle phase; b. caspase-3 activation; and c. apoptosis-associated DNA fragmentation in individual human leukemic HL-60 cells treated with the DNA topoisomerase I (topo1) inhibitors topotecan (TPT) and camptothecin (CPT) or with the topo2 inhibitor mitoxantrone (MTX). In response to TPT or CPT maximal increase of gammaH2AX immunofluorescence was seen in S-phase cells by 90 min. In contrast, following MTX treatment the maximal rise of gammaH2AX was detected at 2 h in G1 cells and the cell cycle phase specificity was much less apparent. A linear relationship between the drug concentration and increase of gammaH2AX immunofluorescence was seen only up to 200 nM TPT; a decline in gammaH2AX was apparent at a concentration range between 0.4 and 1.6 microM TPT. Thus, the intensity of gammaH2AX immunofluorescence, as a marker of cell survival following TPT treatment, can be used only within a limited range of drug concentration. Following treatment with TPT, CPT or MTX the peak of H2AX phosphorylation preceded caspase-3 activation and the appearance of apoptosis-associated DNA fragmentation, both selective to S-phase cells. Progression of apoptosis was paralleled by a decrease in gammaH2AX immunofluorescence. The data also indicate that regardless whether treated with inhibitors of topo1 or topo2, at comparable levels of dsDNA breaks, the cells replicating DNA have a higher proclivity to undergo apoptosis compared to G1 or G2/M cells.  相似文献   

6.
Bid plays a role in the DNA damage response   总被引:2,自引:0,他引:2  
Zinkel SS  Hurov KE  Gross A 《Cell》2007,130(1):9-10; author reply 10-1
  相似文献   

7.
H2AX, the evolutionarily conserved variant of histone H2A, has been identified as one of the key histones to undergo various post-translational modifications in response to DNA double-strand breaks (DSBs). By virtue of these modifications, that include acetylation, phosphorylation and ubiquitination, H2AX marks the damaged DNA double helix, facilitating local recruitment and retention of DNA repair and chromatin remodeling factors to restore genomic integrity. These modifications are essential for effective DSB repair, so is their removal for cell, to recover from checkpoint arrest. Because of these vital roles during DSB signaling and also its activation during early cancer stages, H2AX is emerging as an intriguing gene in tumor biology, supported further by frequent deletion of the region harboring this gene. This review focuses on the insights gained from recent studies on dynamic regulation of H2AX in DSB repair. Also, posing future challenges in the area of chromatin reorganization and retention of epigenetic signature post-DSB-repair with implication of its haploinsufficiency in human cancers.  相似文献   

8.
Double strand breaks (DSBs) are the most deleterious of the DNA lesions that initiate genomic instability and promote tumorigenesis. Cells have evolved a complex protein network to detect, signal, and repair DSBs. In mammalian cells, a key component in this network is H2AX, which becomes rapidly phosphorylated at Ser(139) (γ-H2AX) at DSBs. Here we show that monoubiquitination of H2AX mediated by the RNF2-BMI1 complex is critical for the efficient formation of γ-H2AX and functions as a proximal regulator in DDR (DNA damage response). RNF2-BMI1 interacts with H2AX in a DNA damage-dependent manner and is required for monoubiquitination of H2AX at Lys(119)/Lys(120). As a functional consequence, we show that the H2AX K120R mutant abolishes H2AX monoubiquitination, impairs the recruitment of p-ATM (Ser(1981)) to DSBs, and thereby reduces the formation of γ-H2AX and the recruitment of MDC1 to DNA damage sites. These data suggest that monoubiquitination of H2AX plays a critical role in initiating DNA damage signaling. Consistent with these observations, impairment of RNF2-BMI1 function by siRNA knockdown or overexpression of the ligase-dead RNF2 mutant all leads to significant defects both in accumulation of γ-H2AX, p-ATM, and MDC1 at DSBs and in activation of NBS1 and CHK2. Additionally, the regulatory effect of RNF2-BMI1 on γ-H2AX formation is dependent on ATM. Lacking their ability to properly activate the DNA damage signaling pathway, RNF2-BMI1 complex-depleted cells exhibit impaired DNA repair and increased sensitivity to ionizing radiation. Together, our findings demonstrate a distinct monoubiquitination-dependent mechanism that is required for H2AX phosphorylation and the initiation of DDR.  相似文献   

9.
10.
RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H2O2 treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.  相似文献   

11.
Xiaofeng Jiang 《FEBS letters》2010,584(13):2926-2930
Phosphorylation of H2AX functions to recruit DNA repair complexes to sites of DNA damage. Here, we report that H2AX is constitutively acetylated on lysine 36 (H2AXK36Ac) by the CBP/p300 acetyltransferases. H2AXK36Ac is required for cells to survive exposure to ionizing radiation; however, H2AXK36Ac levels are not increased by DNA damage. Further, acetylation of H2AX did not affect phosphorylation of H2AX or the formation of DNA damage foci. Finally, cells with a double mutation in both the H2AX acetylation and phosphorylation sites were more radiosensitive than cells containing individual mutations. H2AXK36Ac is therefore a novel, constitutive histone modification located within the histone core region which regulates radiation sensitivity independently of H2AX phosphorylation.  相似文献   

12.
13.
We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor‐α and cycloheximide. By affinity purification and mass spectrometry, RNA polymerase II‐associated protein 3 (RPAP3) was identified as a Monad binding protein and may function with Monad as a novel modulator of apoptosis pathways. Here we report that Reptin, a highly conserved AAA + ATPase that is part of various chromatin‐remodeling complexes, is also involved in the association of RPAP3 by immunoprecipitation and confocal microscopic analysis. Overexpression of RPAP3 induced HEK293 cells to death after UV‐irradiation. Loss of RPAP3 by RNAi improved HeLa cell survival after UV‐induced DNA damage and attenuated the phosphorylation of H2AX. Depletion of Reptin reduced cell survival and facilitated the phosphorylation on H2AX. These results suggest that RPAP3 modulates UV‐induced DNA damage by regulating H2AX phosphorylation. J. Cell. Biochem. 106: 920–928, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high‐throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin‐treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C‐terminal dual serine target motif unique to H2AX in the plant lineage showed 171‐fold phosphorylation that was absent in atm mutant lines. The physiological significance of post‐translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM‐mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post‐translational DNA damage signalling responses in plants and establish the requirement of H2AX phosphorylation for plant survival under genotoxic stress.  相似文献   

15.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks   总被引:38,自引:0,他引:38  
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.  相似文献   

16.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

17.
18.
19.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

20.
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm?U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G? and G?, and that mcm?U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm?U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号