首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurochemistry of Brain Neuroendocrine Immune System: Signal Molecules   总被引:1,自引:0,他引:1  
Galoyan A 《Neurochemical research》2000,25(9-10):1343-1355
The aim of this review is not so much to show the problem of neuroendocrine, neurophysiologic, and neurochemical mechanisms of the immune system regulation of the organism by brain (there is a great deal of literature about it), as to solve the problem of whether the brain itself is an immune organ, and also to define cellular, neurochemical, and immunological properties of the brain for its immune defense when the blood-brain barrier is not damaged in spite of the penetration of the infection to brain. The accumulated literary data on CNS interaction with the immune system, expression of several cytokines and their receptors in the neurons of human brain culture, in astrocytes and microglia, all testify to the existence of a brain immune system. Recently studies appeared on the expression of major histocompatibility complex in brain neurons. It does not exclude the possibility of expression of immunoglobulins (or immunoglobulin-like proteins) in brain cells. Data obtained by us on the biosynthesis of a number of known interleukins and new cytokines in neurosecretory neurons of hypothalamus (N.Paraventricularis and N. Supraopticus) demonstrate that neuroendocrine nuclei of the hypothalamus are the center for neuroendocrine and immune systems of brain.  相似文献   

2.
Crowley WR  Ramoz G  Torto R  Keefe KA  Wang JJ  Kalra SP 《Peptides》2007,28(2):447-452
The expression of neuropeptide Y (NPY) and its co-messenger, agouti-related peptide (AgRP), in arcuate neurons of the hypothalamus is increased during lactation in rats. Our research has been addressing the questions of the physiological actions of these peptides during lactation and the physiological signals associated with lactation that result in increased expression of their genes. Our studies indicate that NPY and AgRP exert pleiotropic actions during lactation that help integrate neuroendocrine regulation of energy balance with controls over anterior and posterior pituitary hormone secretion. Further, reciprocal signaling to the NPY/AgRP system by leptin and ghrelin is responsible for the changes in expression of these hypothalamic peptides in lactating animals, and thus, may contribute to regulation of food intake and the various neuroendocrine adaptations of lactation.  相似文献   

3.
Electrical Properties of Hypothalamic Neuroendocrine Cells   总被引:7,自引:1,他引:6       下载免费PDF全文
Goldfish hypothalamic neuroendocrine cells have been investigated with intracellular recordings. The cells showed resting potentials of 50 mv and action potentials up to 117 mv followed by a long lasting and prominent diphasic hyperpolarizing afterpotential. The action potential occurred in two steps indicating sequential invasion. "Total" neuron (input) resistance was measured to be 3.3 x 107 Ω and total neuron time constant was 42 msec. Orthodromic volleys, produced by olfactory tract stimulation, generated graded excitatory postsynaptic potentials. These neuroendocrine cells seem, therefore, to have electrical membrane properties that are similar to those of other central neurons. Antidromic volleys (pituitary stimulation) produced inhibitory post-synaptic potentials whose latency was only slightly longer than that of the antidromic spike indicating the presence of recurrent collaterals. This finding suggests that the concept of the neuroendocrine cell as a neuron whose axon forms contacts only on blood vessels and not on other neurons or effector cells is too restrictive. Perfusion of the gills with dilute (0.3 per cent) sea water produced an inhibition of spontaneous activity. This inhibition is discussed in relation to recent work which demonstrates that goldfish hypothalamic hormones facilitate Na+ influx across the gill membrane.  相似文献   

4.
Neuroendocrine properties of macrophage migration inhibitory factor (MIF)   总被引:1,自引:0,他引:1  
The cytokine macrophage migration inhibitory factor (MIF) is produced by neuroendocrine and immune tissues and possesses several features that allow it to be characterized as a neuroendocrine mediator. Its pro-inflammatory action and its pathogenic role in inflammatory diseases, such as septic shock, arthritis and other diseases, have clearly been demonstrated and may be based in part on neuroendocrine mechanisms. Macrophage migration inhibitory factor possesses glucocorticoid-antagonist properties within the immune system and participates in the regulation of several endocrine circuits. This review summarizes the current state of MIF research and focuses on MIF expression and function in nervous and endocrine tissues.  相似文献   

5.
6.
The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.  相似文献   

7.
8.
A classical distinction between endocrine cells and neurons cannot be accepted without exception. This dichotomy was first challenged by the concept of neurosecretion. Recent observations indicate that hormone synthesis takes place in many extraendocrine tissues since the gene expression for prohormone synthesis seems to be common for all eukaryotes although the secretion of biological active hormone products is limited by posttranslational processing for differentiated cells. Increasing number of data support the view that regulation of pituitary hormone secretion is under multifactorial control in addition to specific signaling molecular effects of hormone-releasing hormones. Such modulators are co-secreted messengers from hypothalamic sources or co-functioning at the pituitary cell level. Multichannel regulation of pituitary tropic hormones appears to be important for understanding the interactions of pharmacological agents with pituitary hormone release, on the one hand, and the modulation of hormone release in pathological conditions, on the other hand. Perinatal transient hazards may induce permanent alterations in adaptive behavior when tested in adult age. Corticosteroid-induced deviation of avoidance behavioral reactions may be opposed by simultaneous administration of ACTH-like peptides. These observations revealed that a balance of the glucocorticoids and ACTH-like peptides in perinatal period basically determine the adaptative reaction of animals in adult age. Immune system may be called as a mobile brain since its tremendous information capacity and its responsiveness to alterations of chemical environmental signals. Recent data support the view that there is a bidirectional communication between the neuro-endocrine adaptational axis and the immune system. Stress hormones can alter the immune response and mononuclear cells produce factors that change the neuroendocrine regulation. In addition to these, prohormones are synthesized in mononuclear cells that may be involved in regulation of signalization between cells and in activation of endocrine system and brain functions.  相似文献   

9.
The study involves 3 aspects of neuroendocrine control over the organism functions in aging: the decline in reproductive functions, the reduction of growth hormone secretion and the decrease in thymic functional activity and the altered relationship between neuroendocrine and immune systems. The role that an age-related decrease in dopamine and noradrenaline production by hypothalamic neurones plays in the above age changes in neuroendocrine control has been traced. The age-related decrease in functions of hypothalamic catecholaminergic neurones is apparently caused by the damaging effect of hormones (prolactin, glucocorticoids and, especially, estrogen), free radicals and toxins, both of the endogenous and exogenous origin. The restrained nutrition increases lifespan of the experimental animal owing to reduced "wear out" of the neuroendocrine system and organs and tissues that are controlled by this system.  相似文献   

10.
Three conclusions are suggested by some of the recent work on aging, immunology and the neuroendocrine system. 1) There appears to be sufficient data to implicate the neuroendocrine system in both the maturation and the senescence of at least some components of the immune system. 2) The thymus by its presence or its absence appears to influence certain functions of the pituitary; thus, there appears to be a possible reciprocal relationship between the pituitary and the thymus. 3) Changes in the levels of pituitary hormones or hormones that are controlled by the pituitary can restore in older rats and mice certain functions that are generally considered as part of the immune surveillance and defense system. Consequently, it can be hoped that further studies of neuroendocrine-immune relationships might lead to an understanding of some of the causes for the decline in immune competence with age in mammals.  相似文献   

11.
J D Erickson  H Varoqui 《FASEB journal》2000,14(15):2450-2458
Vesicular transporters are responsible for the loading of neurotransmitters into specialized secretory organelles in neurons and neuroendocrine cells to make them available for regulated neurosecretion. The exocytotic release of neurotransmitter therefore depends on the functional activity of the vesicular transporters and their efficient sorting to these secretory organelles. Molecular analysis of vesicular transport proteins has revealed important information regarding structural domains responsible for their functional properties, including substrate specificity and trafficking to various classes of secretory vesicles. These studies have established the existence of an important functional relationship between transporter activity and presynaptic quantal neurosecretion.  相似文献   

12.
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver.  相似文献   

13.
Fuite J  Vernon SD  Broderick G 《Genomics》2008,92(6):393-399
This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic–pituitary–adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.  相似文献   

14.
We approach the field of stress immunology from an ecological point of view and ask: why should a heavy physical workload, for example as a result of a high reproductive effort, compromise immune function? We argue that immunosuppression by neuroendocrine mechanisms, such as stress hormones, during heavy physical workload is adaptive, and consider two different ultimate explanations of such immunosuppression. First, several authors have suggested that the immune system is suppressed to reallocate resources to other metabolic demands. In our view, this hypothesis assumes that considerable amounts of energy or nutrients can be saved by suppressing the immune system; however, this assumption requires further investigation. Second, we suggest an alternative explanation based on the idea that the immune system is tightly regulated by neuroendocrine mechanisms to avoid hyperactivation and ensuing autoimmune responses. We hypothesize that the risk of autoimmune responses increases during heavy physical workload and that the immune system is suppressed to counteract this.  相似文献   

15.
Modern methods of diagnosis have made the distinction between hypothalamic failure and ovarian failure routine. Failure of the orderly progression of hypothalamic gonadotrophin-releasing hormone (GnRH) → pituitary gonadotrophins → ovarian steroids and inhibin → hypothalamus/pituitary results in anovulation/amenorrhea. The hypothalamic connections that regulate the pattern and amplitude of GnRH pulses are plastic and respond to external/psychological conditions and internal/metabolic factors that may affect the hypothalamic substrate on which estrogen levels can act. We trace the neuroendocrine regulation of the ovarian cycle, concentrating on hypothalamic connections that underlie negative and positive feedback control of GnRH and the complementary role of the adenohypophysis. The main hormone regulating this "central axis" and the development of the endometrium is estradiol which is exported from the developing ovarian follicles and thereby closes the feedback loop with follicle development. Progesterone and inhibin are also involved. Neuroendocrine responses to internal and external factors can cause anovulation and amenorrhea. Generally, these are accompanied by abnormal negative feedback between estradiol and the gonadotrophins; coexistence of low estradiol and luteinizing hormone/follicle-stimulating hormone. There are three main causes: (1) genetic diseases that interfere with the migration of GnRH cells into the brain or result in misfolding of GnRH; (2) input from the brain that interrupts normal feedback (e.g. stress and weight loss amenorrhea); and (3) the effect of agents which alter central neurotransmission and hypothalamic function (e.g. elevated prolactin and psychotropic medications). All types of hypothalamic insufficiency result in insufficient stimulation of the ovaries. In addition to amenorrhea, this central alteration also results in other complications (downstream disease) that make hypothalamic amenorrhea of greater consequence than simply reproductive failure. Thus, there may be more at stake in the diagnosis and treatment of hypothalamic failure than brings the patient to her caregiver.  相似文献   

16.
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver. (Author correspondence: )  相似文献   

17.
There are several studies that clearly indicate a close bidirectional communication between the neuroendocrine and immune systems. In this sense, hypothalamic releasing hormones, besides their neuroendocrine role, have been shown to influence immune functions. Despite studies developed in mammals, there is, as yet, no information available about the role of the pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-related peptide (PRP) in the fish innate immune system. The present study has evaluated the effect of PACAP and PRP administered by bath immersion, on important parameters of innate immunity and antioxidant defenses in African catfish (Clarias gariepinus) fry. We have shown, for the first time, that administration of recombinant C. gariepinus PACAP not only promotes growth but also increases lysozyme, nitric oxide synthase-derived metabolites and antioxidant defenses in treated fry. From our results, PACAP appears to act as a regulator of the teleostean immune system, in addition to its physiological role in controlling growth of fish.  相似文献   

18.
Neuroendocrine Correlates of Circadian Rhythmicity in Crustaceans   总被引:1,自引:0,他引:1  
The secretion of neurohormones from the crustacean X-organ –sinus gland system is controlled by environmental influences,light being the most conspicuous. Two sets of photoreceptorsappear to mediate the influence of light on neurosecretion basedon intracellular recordings from X-organ neurons and estimationsof hormone release. Extra-retinal photoreceptors can initiateneurohormonal release from the eyestalk. Neurosecretory activity is also influenced by putative neurotransmitters.GABA is found in high concentrations in the medulla temninalisof the eyestalk and is released by stimulation, in a calcium-dependentmanner. Diurnal variations occur in the amounts of eyestalk neurohormones,either those present in the eyestalk or released by electricalstimulation of the isolated sinus gland. Rhythm phases varyfrom one hormone to another. Neurohormones secreted in the eyestalkare also found in other regions of the central nervous system.Rhythms of neurosecretion are present both in the secretionin the isolated eyestalk and in eyestalkless animals, thus indicatingthat rhythmicity is a distributed property of the neurosecretorysystem.  相似文献   

19.
Data on the endocrine heart—neurosecretory cells of heart, producing coronarydilatory, metabolically active glycopeptides with physico-chemical and biological properties similar to those of previously discovered cardioactive hypothalamic neurohormones—are summarized. Heart hormones participate in both local and distant regulation of heart metabolism and function. Formation and action of these heart hormones is closely related to hypothalamic cardioactive neurohormones K, C, and G and their protein precursors. Neurohormones from heart and hypothalamus comprise a system of neurohumoral connections between these two organs. A possible role of APUD cells in the generation of a number of heart peptides and glycopeptides exerting hormonal activity is discussed.Abbreviations Used NC Neurohormone C - NK Neurohormone K - NC-H Hypothalamic NC - NK-H Hypothalamic NK - PC-NC NC cleaved from protein-carrier - PC-NK NK cleaved from protein-carrier - BB-NC Brain blood NC - BB-NK Brain blood NK - H1 Substrate 1 from heart - H2 Substrate 2 from heart - H3 Substrate 3 from heart - HB1 Substrate 1 from heart blood - HB2 Substrate 2 from heart blood - PC-H1 H1 cleaved from protein-carrier - PC-H2 H2 cleaved from protein-carrier - PC-H3 H3 cleaved from protein-carrier - PC-CC Coronaroconstrictory substance cleaved from protein-carrier - GPG Gomori-positive granules - MLC Mast-like cells  相似文献   

20.
Evidence describing altered neuroendocrine function during aging from this and other laboratories is reviewed, with focus on changes in the brain-pituitary-ovarian-adrenal-hepatic and in the brain-pituitary-ovarian systems. Difficulties in interpreting the discordant data on age-related changes in pituitary function are discussed. Among mechanisms of reproductive aging are changes at both the ovarian and hypothalamic level (including reduced catecholamine levels, turnover, and synaptosomal uptake). However, it cannot yet be concluded that impairments of hypothalamic catecholamine metabolism are the primary cause for the loss of regular cycles. Evidence for dopaminergic impairments in the basal ganglions of humans and rodents during normal aging suggests that these changes may be a general phenomenon of aging. Although the origins of the changes are not yet known, neuronal cell loss in the substantia nigra would not seem to be the only cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号