首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and sensitive high performance liquid chromatography (HPLC) separation procedure coupled with tandem mass spectroscopy (MS and MS(2)) detection was developed to identify for the first time the oxidation products of 5β-scymnol [(24R)-(+)-5β-cholestan-3α,7α,12α,24,26,27-hexol] catalysed by bacterial hydroxysteroid dehydrogenase (HSD) reactions in vitro. The authentic scymnol (MW 468) standard yielded a protonated molecular ion [M+H](+) at m/z 469 Da, and higher mass adduct ions attributed to [M+NH(4)](+) (m/z 486), [M+H+CH(3)OH](+) (m/z 501) and [M+H+CH(3)COOH](+) (m/z 530). (24R)-(+)-5β-Cholestan-3-one-7α,12α,24,26,27-pentol (3-oxoscymnol, m/z 467 Da, relative retention time (RRT)=0.89) was identified as the principle molecular species of scymnol in the reaction with 3α-HSD pure enzyme. [S](0.5) for the reaction of 3α-HSD with scymnol as substrate was 0.7292 mM. (24R)-(+)-5β-cholestan-7-one-3α,12α,24,26,27-pentol (7-oxoscymnol, m/z 467 Da, RRT=0.79) and (24R)-(+)-5β-cholestan-12-one-3α,7α,24,26,27-pentol (12-oxoscymnol, m/z 467 Da, RRT=0.81) were similarly identified as principle molecular species in the respective 7α-HSD and 12α-HSD reactions. Polarity of the oxoscymnol species was established as 7-oxoscymnol>12-oxoscymnol>3-oxoscymnol>scymnol (in order from most polar to least polar). Confirmation that 5β-scymnol is an oxidative substrate for steroid-metabolising enzymes was made possible by the use of sophisticated liquid chromatography-mass spectrometry (LC-MS) techniques that will likely provide the basis for further exploration of scymnol as a therapeutic compound.  相似文献   

2.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

3.
A sensitive HPLC-APCI-MS method for the determination of vitamin K(1) (VK-1) in human plasma was established. Target ions at [M+H](+)m/z 451.5 for VK-1 and [M+H](+)m/z 331.4 for the I.S. (teprenone). Calibration curve was linear over the range of 0.3-1,000 ng/ml. The lower limit of quantification was 0.3 ng/ml. The intra- and inter-batch variability values were less than 8% and 15%, respectively. The C(max) was 210.1+/-86.7 ng/ml while the elimination half-life (t(1/2)) was 8.8+/-1.7h and time to the C(max) was 5.5+/-0.8h after administration of soft capsule containing 10mg VK-1.  相似文献   

4.
We report here a quantitative method for the analysis of ABT-578 in human whole blood samples. Sample preparation was achieved by a semi-automated 96-well format liquid-liquid extraction (LLE) method. Aluminum/polypropylene heat seal foil was used to enclose each well of the 96-well plate for the liquid-liquid extraction. A liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method with pre-column regeneration was developed for the analysis of sample extracts. Selective reaction monitoring (SRM) of the mass transitions m/z 983-935 and m/z 931-883 was employed for the detection of ABT-578 and internal standard, respectively. The ammonium adduct ions [M + NH(4)](+) generated from electrospray ionization were monitored as the precursor ions. The assay was validated for a linear dynamic range of 0.20-200.75ng/ml. The correlation coefficient (r) was between 0.9959 and 0.9971. The intra-assay CV (%) was between 1.9 and 13.5% and the inter-assay CV (%) was between 4.7 and 11.3%. The inter-assay mean accuracy was between 86.4 and 102.5% of the theoretical concentrations.  相似文献   

5.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

6.
Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5'-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M + H - H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M - H]-, a glycerol (G) adduct ion at m/z 457 [M - H + G]- and a dimer ion at m/z 731 [2M - H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M - H]- and cationized species at m/z 626 [M + Na - 2H]- and 648 [M + 2Na - 3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M - H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M - H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M - H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.  相似文献   

7.
The discovery and development of new platinum-containing anticancer drugs have represented an integral part of anticancer drug development at the Institute of Cancer Research, Sutton, over almost 20 years. As part of a collaboration with chemists at Johnson Matthey, later AnorMED, four major new classes of platinum drug have been discovered, three of which have entered clinical trial. Earlier studies led to the clinical development of the less toxic analogue carboplatin and JM216, the first orally administerable platinum drug. In recent years, the focus has been on two lead complexes designed to overcome the major mechanisms of tumour resistance to cisplatin: JM335 (trans-ammine (cyclohexylaminedichlorodihydroxo) platinum(IV)), an active trans platinum complex; and ZD0473 (cis-amminedichloro(2-methylpyridine) platinum(II)), a sterically hindered complex shown to be less reactive towards thiol-containing molecules than cisplatin. JM335 shows some circumvention of acquired cisplatin resistance in vitro and exhibits unique cellular pharmacological properties in comparison to cisplatin or its cis-isomer in terms gene-specific repair of adducts on DNA and the rate of induction of apoptosis. ZD0473 is now in phase I clinical trial. Myelosuppression is the dose-limiting toxicity at a dose of 130 mg/m2 given i.v. every 3 weeks and there has been evidence of antitumour activity. ZD0473-resistant human ovarian carcinoma cell lines have been established in vitro. Some mechanisms of resistance common to those described for cisplatin (decreased drug uptake, increased glutathione) have been observed plus, in one cell line, increased BCL2 levels and loss of the DNA mismatch repair protein MLH1.  相似文献   

8.
The antitumor activity of the trinuclear Phase I clinical agent, BBR3464, is matched by that of polyamine-linked dinuclear complexes. The cytotoxicity and cellular accumulation of three polynuclear platinum complexes: [?trans-PtCl(NH3)2?2 mu-?trans-Pt(NH3)2(H2N(CH2)6-NH2)2?]4+ (BBR3464), [?trans-PtCl(NH3)2?2(H2N(CH2)3NH2(CH2)4NH2)]3+ (BBR3571), and [?trans-PtCl(NH3)2?2(H2N(CH2)6-NH2)]2+ (BBR3005), were studied in a series of murine L1210 cell lines and compared with cisplatin. Besides murine L1210 cell lines sensitive (/0) and resistant (/DDP) to cisplatin, the efficacy of the compounds in a cell line rendered resistant to BBR3464 (/3464) was examined. Finally, to examine possible uptake pathways of these novel charged complexes, cytotoxicity in a cell line resistant to the polyamine synthesis inhibitor, methylglyoxal-bis(guanylhydrazone) (/MGBG), was studied. Cytotoxicity profiles of BBR3571 most closely matched that of BBR3464. Both agents showed significantly reduced cytotoxicity in L1210/ BBR3464. The cytotoxicity of neither agent was affected by the polyamine uptake-deficient cell line and indeed both complexes showed significantly enhanced cytotoxicity in L1210/MGBG relative to wild-type L1210/0. The cellular uptake of both BBR3464 and BBR3571 was enhanced in L1210/DDP. These studies suggest that the chemical feature of a diamine linker containing an internal charge contributes significantly to the anticancer profiles of both the trinuclear platinum complex, BBR3464, which incorporates a charged platinum into a diamine linker, and the dinuclear platinum complex, BBR3571, which incorporates only a naturally occurring polyamine as diamine linker.  相似文献   

9.
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.  相似文献   

10.
A sensitive high performance liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry (HPLC-APCI-MS) assay for determination of cyclovirobuxine D (CVB-D) in human plasma using mirtazapine as internal standard (I.S.) was established. After adjustment to a basic pH with sodium hydroxide, plasma was extracted by ethyl acetate and separated by high performance liquid chromatography (HPLC) on a reversed-phase C(18) column with a mobile phase of 30 mM ammonium acetate buffer solution containing 1% formic acid-methanol (48:52, v/v). CVB-D was determined with atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS). HPLC-APCI-MS was performed in the selected-ion monitoring (SIM) mode using target ions at [M+H](+)m/z 403.4 for CVB-D and [M+H](+)m/z 266.2 for I.S. Calibration curves were linear over the range 10.11-4044 pg/ml. The lower limit of quantification was 10.11 pg/ml. The intra- and inter-run variability values were less than 9.5 and 12.4%, respectively. The mean plasma extraction recovery of CVB-D was in the range of 85.3-92.8%. The method was successfully applied to determine the plasma concentrations of CVB-D in Chinese volunteers.  相似文献   

11.
Transglycosylation potential of the fungal diglycosidase α-rhamnosyl-β-glucosidase was explored. The biocatalyst was shown to have broad acceptor specificity toward aliphatic and aromatic alcohols. This feature allowed the synthesis of the diglycoconjugated fluorogenic substrate 4-methylumbelliferyl-rutinoside. The synthesis was performed in one step from the corresponding aglycone, 4-methylumbelliferone, and hesperidin as rutinose donor. 4-Methylumbelliferyl-rutinoside was produced in an agitated reactor using the immobilized biocatalyst with a 16% yield regarding the sugar acceptor. The compound was purified by solvent extraction and silica gel chromatography. MALDI-TOF/TOF data recorded for the [M+Na](+) ions correlated with the theoretical monoisotopic mass (calcd [M+Na](+): 507.44 m/z; obs. [M+Na](+): 507.465 m/z). 4-Methylumbelliferyl-rutinoside differs from 4-methylumbelliferyl-glucoside in the rhamnosyl substitution at the C-6 of glucose, and this property brings about the possibility to explore in nature the occurrence of endo-β-glucosidases by zymographic analysis.  相似文献   

12.
The reaction products obtained from mixtures of 5'-GMP and platinum(IV) compounds with formula Pt(IV)Cl4(LL) and Pt(IV)Cl2(OH)2(LL) (LL representing two monodentate or one bidentate amine ligand) have been characterized by proton NMR spectroscopy. The amines used are NH3, H2N-CH2-CH2-NH2 (ethylenediamine, en), H2N-CH2-C(CH3)2-CH2-NH2 (2,2-dimethyl-1,3-diaminopropane, dmdap), and HC(CH3)2-NH2 (isopropylamine, ipa). Conditions varied during the reaction are pH (values of 4, 7, and 10), effect of visible light, and addition of vitamin C as a reducing agent. In all cases, the major product appeared to be the bis(5'-GMP)(LL)Pt(II) compound. The pH effect is limited; i.e., at pH 4 the reactions proceed somewhat faster than at neutral pH, while at pH 10 slower reactions occur. The illumination with visible light also induces only slight differences in the yields of the products. On the other hand, when vitamin C is present, the reactions proceed quite rapidly, resulting in the same main product but in higher yields (up to 80%). The facts that apparently no Pt(IV) adducts with 5'-GMP can be observed under these conditions and that the major products are bis(5'-GMP)(LL)Pt(II) compounds clearly support the hypothesis that the antitumor activity of certain platinum(IV) compounds is based upon in vivo reduction to the corresponding platinum(II) compounds.  相似文献   

13.
During a study aimed at generating a bispecific molecule between BN antagonist (D-Trp(6),Leu(13)-psi[CH(2)NH]-Phe(14))BN(6-14) (Antag1) and mAb22 (anti-FcgammaRI), we attempted to cross-link the two molecules by introducing a thiol group into Antag1 via 2-iminothiolane (2-IT, Traut's reagent). We found that reaction of Antag1 with 2-IT, when observed using HPLC, affords two products, but that the later eluting peptide is rapidly transformed into the earlier eluting peptide. To understand what was occurring we synthesized a model peptide, D-Trp-Gln-Trp-NH(2) (TP1), the N-terminal tripeptide of Antag1. Reaction of TP1 with 2-IT for 5 min gave products 1a and 3a; the concentration of 1a decreased with reaction time, whereas that of 3a increased. Thiol 1a, the expected Traut product, was identified by collecting it in a vial containing N-methylmaleimide and then isolating the resultant Michael addition product 2a, which was confirmed by mass spectrometry. Thiol 1a is stable at acidic pH, but is unstable at pH 7.8, cyclizes and loses NH3 to give N-TP1-2-iminothiolane (3a), ES-MS (m/z) [602.1 (M+H)(+)], as well as regenerating TP1. Repeat reaction with Antag1 and 2-IT allowed us to isolate N-Antag1-2-iminothiolane (3b), FAB-MS (m/z) [1212.8 (M+H)(+)] and trap the normal Traut product 1b as its N-methylmaleimide Michael addition product 2b, ES-MS (m/z) [1340.8 (M+H)(+)]. Thiol 1b is also stable at acidic pH, but when neutralized is unstable and cyclizes, forming 3b and Antag1.  相似文献   

14.
A high-performance liquid chromatographic assay with tandem mass spectrometric detection was developed and validated for quantitation of the broad spectrum kinase inhibitor, flavopiridol, in human plasma. Sample preparation conditions included liquid-liquid extraction in acetonitrile (ACN), drying, and reconstitution in 20/80 water/ACN. Flavopiridol and the internal standard (IS), genistein, were separated by reversed phase chromatography using a C-18 column and a gradient of water with 25 mM ammonium formate and ACN. Electrospray ionization and detection of flavopiridol and genistein were accomplished with single reaction monitoring of m/z 402.09>341.02 and 271.09>152.90, respectively in positive-ion mode [M+H](+) on a triple quadrupole mass spectrometer. Recovery was greater than 90% throughout the linear range of 3-1000 nM. Replicate sample analysis indicated within- and between-run accuracy and precision to be less than 13% throughout the linear range. This method has the lowest lower limit of quantitation (LLOQ) reported to date for flavopiridol, and it allows for more accurate determination of terminal phase concentrations and improved pharmacokinetic parameter estimation in patients receiving an active dosing schedule of flavopiridol.  相似文献   

15.
The interaction of the well-known antitumor drug cisplatin cis-[PtCl(2)(NH(3))(2)] and the compound trans-[PtCl(2)NH(3)(4-hydroxymethylpyridine)] with the small protein potato carboxypeptidase inhibitor (PCI) and a PCI mutant in which glycine-39 was substituted by methionine has been followed by HPLC/mass spectrometry. Our results showed that both Pt drugs were able to bind PCI through Met-39 and histidines in mutated PCI, whereas only the trans complex interacted significantly with wild PCI. In the cytotoxic studies, the monofunctional adduct PCI-Met-cisplatin was neither more active nor more selective than cisplatin itself when tested against three tumor cell lines with different number of EGF receptors. Those results suggested that the poor activity of the adduct could be just due to the small fraction of cisplatin which was decoordinated from the adduct and able to penetrate the tumor cells, as well as to the changes in the structure of the platinum drug after the loss of NH(3) groups upon binding PCI-Met.  相似文献   

16.
The novel anticancer drug ([[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) (BBR3464, 1,0,1/t,t,t, TPC) forms a 1,4-interstrand cross-linked adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at N7 positions of guanines four base pairs apart on opposite DNA strands [Y. Qu, N.J. Scarsdale, M.-C. Tran, N. Farrell, J. Biol. Inorg. Chem. 8 (2003) 19-28]. The structure of the identical cross-link formed by the dinuclear [[trans-PtCl(NH(3))(2)](2)-mu-NH(2)(CH(2))(6)NH(2)]](NO(3))(2) (BBR3005, 1,1/t,t, DPC) was examined for comparison. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy. NMR analysis of the adduct shows platination of the unique guanine residues. The strong H8/H1' intraresidue cross-peaks observed for all purine residues (A1, G3, A5 and A7) are consistent with a syn-conformation of the nucleoside unit in all cases. Thus, the structure resembles closely that formed by the trinuclear compound. Further confirmation of this similarity comes from the increase in melting temperature (66 degrees for DPC, 60 degrees for TPC, 22 degrees for free oligonucleotide). Since DNA is the principal target in vivo for these Pt cross-linking agents, the unique structural perturbations induced by these cross-links may be related to the increased cytotoxicity and antitumor activity of polynuclear platinum compounds as compared to cisplatin (cis-DDP). The similarity in the structures suggests opportunities to "deliver" the cross-link in a more efficient manner than the current clinically tested drug.  相似文献   

17.
Flurogestone (FGA) is a synthetic progesterone, with a progestational action higher than that of progesterone itself. It is intended for vaginal use in large animals to induce oestrus synchronization. A quantitative method for the analysis of flurogestone acetate (FGA) in ovine plasma by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been developed. After the incorporation of megestrol acetate (MGA) as internal standard (IS) and followed by a liquid-liquid extraction from plasma, FGA and MGA were chromatographed using a reverse-phase HPLC column and detected by tandem mass spectrometry with a TurboIonSpray source. Multiple reaction-monitoring (MRM) mode was used for the quantitative determination of FGA in ovine plasma. The precursor ions [M+H](+) at m/z 407.2 and 385.1 for FGA and MGA, respectively, produced product ions at m/z 267.1/285.1 for FGA and m/z 267.1/224.0 for MGA. The validated concentration range was 0.2-5.0 ng/ml based on 500 microl plasma aliquots. The lower limit of quantitation was 0.2 ng/ml. Fully validated selectivity, accuracy, precision and reproducibility criteria for routine use in pharmacokinetic studies were demonstrated.  相似文献   

18.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

19.
SRIXE mapping has been used to gain insight into the fate of platinum(II) and platinum(IV) complexes in cells and tumours treated with anticancer active complexes to facilitate the development of improved drugs. SRIXE maps were collected of thin sections of human ovarian (A2780) cancer cells treated with bromine containing platinum complexes, cis-[PtCl(2)(3-Brpyr)(NH(3))] (3-Brpyr=3-bromopyridine) and cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] (OAcBr=bromoacetate), or a platinum complex with an intercalator attached cis-[PtCl(2)(2-[(3-aminopropyl)amino]-9,10-anthracenedione)(NH(3))]. After 24h the complexes appear to be localised in the cell nucleus with a lower concentration in the surrounding cytoplasm. In cells treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] the concentration of bromine was substantially higher than in control cells and the bromine was co-localised with the platinum consistent with the 3-bromopyridine ligand remaining bound to the platinum. The cells treated with cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] also showed an increased level of bromine, but to a much lesser extent than for those treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] suggestive of substantial reduction of the platinum(IV) complex. Maps were also collected from thin sections of a 4T1.2 neo 1 mammary tumour xenograft removed from a mouse 3h after treatment with cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)] and revealed selective uptake of platinum by one cell.  相似文献   

20.
Liu Q  Qu Y  Van Antwerpen R  Farrell N 《Biochemistry》2006,45(13):4248-4256
The interaction between phospholipids and polynuclear platinum drugs was studied as a mechanism model for cellular uptake of anticancer drugs. The interaction was studied by differential scanning calorimetry (DSC), 31P nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma optical emission spectroscopy (ICP-OES), and electrospray ionization mass spectrometry (ESI-MS). The transition temperature, enthalpy, and entropy of negatively charged phospholipids DPPS, DPPA, and DPPG were changed upon reaction with the trinuclear platinum complex [{trans-PtCl(NH3)2}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)4 (I, BBR3464) and the dinuclear analogue [{trans-PtCl(NH3)2}mu-{(NH2)(CH2)3NH2(CH2)4(NH2)}Cl3 (II, BBR3571). This suggests that these platinum complexes interacted not only with the phosphate headgroup but also with the region of the fatty acid tail of liposomes and finally changed the fluidity of the membrane. Both noncovalent (presumably electrostatic and hydrogen bonding) and covalent interactions were involved in the reactions of the negatively charged phospholipids DPPA, DPPS, and DPPG with the highly positively charged platinum complexes. In contrast, few differences were seen for the zwitterionic phospholipids DPPC and DPPE. The binding ratio of BBR3464 to DPPA liposomes was higher than the ratio of BBR3464 to DPPS liposomes, and similar differences were seen for BBR3571. The binding ratios of the platinum complexes to negatively charged phospholipids DPPA, DPPS, and DPPG were slightly lower in a 100 mM chloride solution than in a chloride-free solution. The binding of BBR3464 and BBR3571 with the liposomes was significantly stronger than that with cis-[PtCl2(NH3)2], cisplatin. ESI-MS confirmed that the products of the incubation of BBR3464 with DPPA and DPPS correspond to chloride displacement and formation of [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPA)2]2+ (1) and [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPS)2]2+ (2), respectively. Similar observations were made for BBR3571. 31P NMR spectra confirmed that the site of binding for DPPA was the phosphate oxygen, whereas for DPPS, a binding site of the nitrogen of the serine side chain is indicated. Noncovalent interactions were also confirmed by use of the analogue [{Pt(NH3)3}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)6 (III, 0,0,0/t,t,t). The implications of these results for the mechanism of cellular uptake of polynuclear platinum complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号