首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

5.
R E Middleton  J B Cohen 《Biochemistry》1991,30(28):6987-6997
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.  相似文献   

6.
Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions.  相似文献   

7.
We have previously shown that an antigenic site in native lysozyme resides around the disulphide bridge 30-115 and incorporates Lys-33 and Lys-116 and one or both of Tyr-20 and Tyr-23. These residues fall in an imaginary line circumscribing part of the surface of the molecule and passing through the spatially adjacent residues Tyr-20, Arg-21, Tyr-23, Lys-116, Asn-113, Arg-114, Phe-34 and Lys-33. The identity of the site was confirmed by demonstrating that the synthetic peptide Tyr-Arg-Tyr-Gly-Lys-Asn-Arg-Gly-Phe-Lys (which does not exist in lysozyme but simulates a surface region of it), and an analogue in which glycine replaced Tyr-23, possessed remarkable immuno-chemical reactivity that accounted entirely for the expected reactivity of the site in native lysozyme. Tyr-23 is not part of the site, and its contribution was satisfied by a glycine spacer. The novel approach presents a powerful technique for the delineation of antigenic (and other binding) sites in native proteins and confirms that these need not always comprise residues in direct peptide linkage.  相似文献   

8.
To characterize the structure of the agonist-binding site of the Torpedo nicotinic acetylcholine receptor (AChR), we have used [3H]acetylcholine mustard [( 3H]AChM), a reactive analog of acetylcholine, to identify residues contributing to the cation-binding subsite. Reaction of [3H]AChM, in its aziridinium form, with AChR-rich membrane suspensions, resulted initially in reversible, high affinity binding (K approximately 0.3 microM) followed by slow alkylation of the acetylcholine-binding site. Incorporation of label into AChR alpha-subunit was inhibited by agonists and competitive antagonists, but not by noncompetitive antagonists, and reaction with 3 microM [3H]AChM for 2 h resulted in specific alkylation of 0.6% of alpha-subunits. Within the alpha-subunit, greater than 90% of specific incorporation was contained within an 18-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Val-46 and containing N-linked carbohydrate. To identify sites of specific alkylation, [3H]AChM-labeled alpha-subunit was digested with trypsin, and the digests were fractionated by reverse phase high pressure liquid chromatography. Specifically labeled material was recovered within a single peak containing a peptide extending from Leu-80 to Lys-107. NH2-terminal amino acid sequencing revealed specific release of 3H in cycle 14 corresponding to alpha-subunit Tyr-93. Identification of Tyr-93 as the site of alkylation was confirmed by radiosequence analysis utilizing o-phthalaldehyde to establish that the released 3H originated from a peptide containing prolines at residues 2 and 9. Because [3H]AChM contains as its reactive group a positively charged quaternary aziridinium, alpha-subunit Tyr-93 is identified as contributing to the cation-binding domain of the AChR agonist-binding site. The selective reaction of [3H]AChM with tyrosyl rather than acidic side chains indicates the importance of aromatic interactions for the binding of the quaternary ammonium group, and the lack of reaction with the tyrosyl or acidic side chains within alpha 190-200 emphasizes the selective orientation of acetylcholine within its binding site.  相似文献   

9.
When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido[alpha-32P]adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled [Dalbon, P., Boulay, F., & Vignais, P. V. (1985) FEBS Lett. 180, 212-218]. The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.  相似文献   

10.
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.  相似文献   

11.
The photoaffinity label 8-azidoadenosine 5'-triphosphate (N3-ATP) was used to covalently modify the recA protein from Escherichia coli within its ATP-binding site. We have previously demonstrated that N3-ATP modification of recA protein is specific for the ATP-binding site and have isolated a unique tryptic peptide (T31), spanning residues 257-280, that contains the exclusive site of attachment of this ATP analog (Knight, K. L., and McEntee, K. (1985) J. Biol. Chem. 260, 867-872). We performed a secondary proteolytic digestion of the [alpha-32P]N3-ATP-labeled T31 peptide using Staphylococcus aureus V8 protease and purified the resulting peptide fragments by high-pressure liquid chromatography (HPLC). Based on a comparison of the amino acid compositions of all purified fragments and sequence analysis of one labeled fragment we determined that Tyr-264 is the exclusive site of N3-ATP attachment in recA protein. Photoaffinity labeling of recA protein was also performed in the presence of single-stranded DNA. Following trypsin treatment and separation of peptides by HPLC we showed that tryptic peptide T31 contained the exclusive site of N3-ATP attachment. A secondary proteolytic digestion was performed on both [alpha-32P]N3ATP-modified T31 and unmodified T31 using alpha-chymotrypsin. Comparison of the HPLC profiles and amino acid compositions of the resulting fragments was consistent with Tyr-264 as the exclusive site of N3-ATP attachment to recA protein.  相似文献   

12.
The proton NMR spectra and role in peptide binding of carboxyl-terminal and NH2-terminal neurophysin residues were studied by preparation of bovine neurophysin-I derivatives from which residues 90-92 had been cleaved by carboxypeptidase or residues 1-8 excised by trypsin. The carboxypeptidase-treated protein showed normal peptide-binding behavior. NMR comparisons of this derivative and the native protein allowed identification of proton resonances associated with residues 89-92, confirmed a lack of functional role for this region of the protein, and permitted new observations on the behavior of neurophysin's aromatic residues. The trypsin-treated protein bound peptide with an affinity only 1/50 that of the native protein at pH 6 but evinced the same binding specificity and pH dependence of binding as the native protein. These results argued against direct interaction of residues in the 1-8 sequence with bound peptide and for a role for these residues, particularly Arg-8, in conformational stabilization of the active site; this role is held to be additional to the reported influence of 1-8 on dimerization. NMR comparisons of the trypsin product and native protein allowed preliminary assignment of a set of alkyl proton resonances to residues within the 1-8 sequence and were compatible with a restricted environment for Arg-8. Conformational differences between native and trypsin-treated proteins were manifest particularly by differences in the NMR spectra of Phe and Tyr-49 ring protons. The behavior of Phe ring protons was consistent with the reported decreased dimerization constant of the trypsin product and suggested participation of Phe-22 or -35 in dimerization. The behavior of Tyr-49 provided the first direct evidence of a change in secondary or tertiary structure associated with excision of residues 1-8. Suggested mechanisms by which this conformational change reduces binding include a direct effect on Tyr-49 and/or a conformational rearrangement of active site residues near Tyr-49.  相似文献   

13.
The polymerization reaction of rabbit muscle actin was completely inhibited by reaction of one amino acid side chain per protein monomer with 5-diazonium-(1H)[14C]tetrazole. A tryptic peptide fingerprint showed a single peptide labeled by the reagent. The peptide was isolated and the labeled amino acid identified by amino acid analysis as Tyr-53. This side chain is not accessible to the reagent in F-actin. The modification is compared to similar inhibitions by other reagents.  相似文献   

14.
The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.  相似文献   

15.
Tetranitromethane, C(NO2)4, a reagent for tyrosyl residues, was found to inactivate irreversibly rabbit skeletal muscle glycogen phosphorylase b. Under the chosen conditions seven tyrosyl residues, namely Tyr-75, 203, 262, 280, 403, 552 and 647, were found to be nitrated. Inactivation was prevented by the presence of the allosteric activator 5'-AMP during nitration. Under these latter conditions one of the reactive tyrosyl residues was not modified by C(NO2)4; thus, this residue appeared to be essential for either catalytic activity or allosteric activation. Tryptic digests of phosphorylase b, reacted with C(NO2)4 in the absence and presence of 5'AMP, were fractionated by gel filtration. The peptide mixtures were further purified by reverse-phase HPLC. One of the peptides contained the tyrosyl residue which was modified by C(NO2)4 only in the absence of 5'AMP. The sequence of this peptide was determined. The amino acid residue which is responsible for the loss of activity upon reaction with C(NO2)4 was identified in the amino acid sequence of phosphorylase b as tyrosine-75. Of the other residues modified in the presence and in the absence of C(NO2)4, tyrosine-403 contributes to the glycogen-storage site whereas Tyr-280 is close to the alpha-D-glucose-binding site. These residues, exposed to the solvent both in the presence and in the absence of 5'AMP, are not essential for catalytic activity.  相似文献   

16.
J Bubis  S S Taylor 《Biochemistry》1987,26(19):5997-6004
Photoaffinity labeling of the regulatory subunits of cAMP-dependent protein kinase with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has proved to be a very specific method for identifying amino acid residues that are in close proximity to the cAMP-binding sites. Each regulatory subunit contains two tandem cAMP-binding sites. The type II regulatory subunit (RII) from porcine heart was modified at a single site, Tyr-381 [Kerlavage, A., & Taylor, S.S. (1980) J. Biol. Chem. 255, 8483-8488]. When a proteolytic fragment of this RII subunit was photolabeled with 8-N3cAMP, two sites were covalently modified. One site corresponded to Tyr-381 and, thus, was analogous to the native RII. The other site of modification was identified as Tyr-196, which is not labeled in the native protein. Photoaffinity labeling was carried out in the presence of various analogues of cAMP that show a preference for one of the two tandem cAMP-binding sites. These studies established that the covalent modification of Tyr-381 was derived from 8-N3cAMP that was bound to the second cAMP-binding site (domain B) and that covalent modification to Tyr-196 was due to 8-N3cAMP that was bound to the first cAMP-binding site (domain A). These sites of covalent modification have been correlated with a model of each cAMP-binding site on the basis of the crystal structure of the catabolite gene activator protein (CAP), which is the major cAMP-binding protein in Escherichia coli.  相似文献   

17.
For optimal activity the catalytic subunit of cAMP-dependent protein kinase requires a phosphate on Thr-197. This phosphate anchors the activation loop in the proper conformation and contributes to catalytic efficiency by enhancing the phosphoryl transfer rate and increasing the affinity for ATP (1). The crystal structure of the catalytic subunit bound to ATP, and the inhibitor peptide, IP20, highlights the contacts made by the Thr-197 phosphate as well as the role adjacent residues play in contacting the substrate peptide. Glu-203 and Tyr-204 interact with arginines in the consensus sequence of PKA substrates at the P-6 and P-2 positions, respectively. To assess the contribution that each residue makes to peptide recognition, the kinetic properties of three mutant proteins (E203A, Y204A, and Y204F) were monitored using multiple peptide substrates. The canonical peptide substrate, Kemptide, as well as a longer 9-residue peptide and corresponding peptides with alanine substitutions at the P-6 and P-2 positions were used. While the effect of Glu-203 is more localized to the P-6 site, Tyr-204 contributes to global peptide recognition. An aromatic hydrophobic residue is essential for optimal peptide recognition and is conserved throughout the protein kinase family.  相似文献   

18.
The peripheral nicotinic acetylcholine receptor (nAChR) is phosphorylated on tyrosine residues in vivo and in vitro at a high stoichiometry. We have previously reported that this tyrosine phosphorylation occurs on the beta, gamma, and delta subunits of the receptor and is implicated in both the modulation of the function of the receptor and localization of the receptor at the synapse. The specific tyrosine residue of each subunit which is phosphorylated is now identified. The endogenously phosphorylated nAChR from the electric organ of Torpedo californica was phosphorylated to maximal stoichiometry in vitro exclusively on tyrosine residues as indicated by phosphoamino acid analysis. Two-dimensional phosphopeptide maps of thermolysin limit digests of the isolated phosphorylated subunits indicated that each subunit is phosphorylated at a single site. To determine the site of tyrosine phosphorylation of the beta, gamma, and delta subunits, phosphorylated subunits were isolated and digested with trypsin. A single phosphotyrosine containing peptide from each subunit was purified by antiphosphotyrosine antibody affinity chromatography and reverse phase high performance liquid chromatography. The purified phosphopeptides were subjected to sequential Edman degradation and sequence analysis. Comparison of the phosphopeptide sequence data with the deduced amino acid sequence of each subunit indicated that Tyr-355 of beta, Tyr-364 of gamma, and Tyr-372 of delta are the sites of in vitro and in vivo tyrosine phosphorylation of the nAChR. Identification of these sites should facilitate further studies of the role of tyrosine phosphorylation in the regulation of receptor function.  相似文献   

19.
Human tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type proteinase inhibitor that regulates a variety of serine proteinases involved in coagulation and fibrinolysis through their non-productive interaction with a P(1) residue (Arg-24) in its first Kunitz-type domain (KD1). Previous kinetic studies revealed that TFPI-2 was a more effective inhibitor of plasmin than several other serine proteinases, but the molecular basis for this specificity was unclear. In this study, we employed molecular modeling and mutagenesis strategies to produce several variants of human TFPI-2 KD1 in an effort to identify interactive site residues other than the P(1) Arg that contribute significantly to its inhibitory activity and specificity. Molecular modeling of KD1 based on the crystal structure of bovine pancreatic trypsin inhibitor revealed that KD1 formed a more energetically favorable complex with plasmin versus trypsin and/or the factor VIIa-tissue factor complex primarily due to strong ionic interactions between Asp-19 (P(6)) and Arg residues in plasmin (Arg-644, Arg-719, and Arg-767), Arg-24 (P(1)) with Asp-735 in plasmin, and Arg-29 (P(5)') with Glu-606 in plasmin. In addition, Leu-26 through Leu-28 (P(2)'-P(4)') in KD1 formed strong van der Waals contact with a hydrophobic cluster in plasmin (Phe-583, Met-585, and Phe-587). Mutagenesis of Asp-19, Tyr-20, Arg-24, Arg-29, and Leu-26 in KD1 resulted in substantial reductions in plasmin inhibitory activity relative to wild-type KD1, but the Asp-19 and Tyr-20 mutations revealed the importance of these residues in the specific inhibition of plasmin. In addition to the reactive site residues in the P(6)-P(5)' region of KD1, mutation of a highly conserved Phe at the P(18)' position revealed the importance of this residue in the inhibition of serine proteinases by KD1. Thus, together with the P(1) residue, the nature of other residues flanking the P(1) residue, particularly at P(6) and P(5)', strongly influences the inhibitory activity and specificity of human TFPI-2.  相似文献   

20.
To identify the autophosphorylation sites on the human insulin receptor (IR), partially purified human IR was incubated in vitro in the presence of insulin and manganese [gamma-32P]ATP so as to achieve near-maximal activation of the histone 2b kinase activity. Approximately 70% of all beta subunit [32P]phosphotyrosine resides on two tryptic peptide segments identified by microsequencing as IR precursor (Ullrich, A., Bell, J. R., Chen, E.-Y., Herrera, R., Petruzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) 1144-1152 (tyrosine at 1146, 1150, 1151, designated peptide 5) and 1315-1329 (tyrosine at 1316, 1322, designated peptide 8), which were recovered in approximately equal amounts. Half of the remaining unidentified [32P]phosphotyrosine residues reside on another tryptic peptide of Mr 4000-5000. Assignment of [32P]phosphotyrosine to specific residues required subdigestion and Edman degradation of 32P peptides covalently coupled to solid supports. Peptide 5 was recovered in triple and double phosphorylated forms in a molar ratio of about 2:1. Tyr-1146 contained 32P in both forms of peptide 5; in the double phosphorylated form, phenylthiohydantoin-[32P]phosphotyrosine was recovered at both Tyr-1150 and Tyr-1151, in a ratio of about 1:2. Thus, the double phosphorylated peptide 5 is presumably a mixture of Tyr-P-1146/1150 and Tyr-P-1146/1151, predominantly the latter. Peptide 8 was recovered only as the double phosphorylated form. We conclude that autophosphorylation of human IR in vitro leads to the phosphorylation of at least 6 of the 13 tyrosine residues on the beta subunit intracellular extension. Five of these tyrosines are clustered in two domains; one domain is in the structurally unique C-terminal tail and contains Tyr-1316 and -1322 which are both phosphorylated. The second domain is located in the segment of the tyrosine kinase region homologous to the major in vitro autophosphorylation site of pp60 v-src and contains Tyr-1146, which is fully phosphorylated, and Tyr-1150 and -1151; although the majority of IR beta subunits exhibit phosphorylation of both tyrosine 1150 and 1151, up to 20-25% of Tyr-1150 remains unphosphorylated at complete kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号